• Title/Summary/Keyword: Carbon flow

Search Result 1,399, Processing Time 0.024 seconds

Microstructure and Mechanical Properties of Hot-Stamped 3.2t Boron Steels according to Water Flow Rate in Direct Water Quenching Process (3.2t 보론강 판재 직수냉각 핫스탬핑시 냉각수 유량에 따른 미세조직 및 기계적 특성)

  • Park, Hyeon Tae;Kwon, Eui Pyo;Im, Ik Tae
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.693-700
    • /
    • 2020
  • Direct water quenching technique can be used in hot stamping process to obtain higher cooling rate compared to that of the normal die cooling method. In the direct water quenching process, setting proper water flow rate in consideration of material thickness and the size of the area directly cooled in the component is important to ensure uniform microstructure and mechanical properties. In this study, to derive proper water flow rate conditions that can achieve uniform microstructure and mechanical properties, microstructure and hardness distribution in various water flow rate conditions are measured for 3.2 mm thick boron steel sheet. Hardness distribution is uniform under the flow condition of 1.5 L/min or higher. However, due to the lower cooling rate in that area, the lower flow conditions result in a drastic decrease in hardness in some areas in the hot-stamped part, resulting in low martensite fraction. From these results, it is found that the selection of proper water flow rate is an important factor in hot stamping with direct water quenching process to ensure uniform mechanical properties.

Parametric study on synthesis of carbon nanotubes by the vertical spray pyrolysis method

  • Park, Young-Soo;Huh, Mong-Young;Kang, Sin-Jae;Lee, Seung-Hee;An, Kay-Hyeok
    • Carbon letters
    • /
    • v.12 no.2
    • /
    • pp.102-106
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been synthesized by ferrocene-catalyzed pyrolysis of toluene. The influences of the experimental conditions on the morphology and microstructure of the product have been analyzed. To find the proper temperature for synthesis of CNTs, the experiment was performed in a temperature range from 800 to $1100^{\circ}C$. From content variation of ferrocene and thiophene as the catalyst, morphological change of carbon nanotubes has been observed. Also, the influence of the gas ratio of hydrogen and argon on the nanotube samples was analyzed by scanning electron microscopy and transmission electron microscopy.

The Sliding Wear Characteristics of Carbon Steel Castings against High Carbon Steel Wire Rods (탄소주강과 경강선재간의 미끄럼 마멸특성)

  • 류중북;채영훈;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.319-326
    • /
    • 2001
  • The sliding wear characteristics of carbon steel castings were Investigated using a ball on disk type tester. The experiment was conducted using high carbon steel wire rods as ball material and carbon steel castings as disk material and different operating conditions, at room temperature under a lubrication and dry conditions. The results showed that the carbon steel castings appeared average wear volume Is lowed after annealing under a lubrication conditions and wear curve linear Increased. The specific wear rate of carbon steel castings Increased with wire diameter lubrication and dry also Increased 125 times In Ory. The sliding wear mechanism were Investigated due to fatigue wear lubrications and abrasive wear dries also wire Included fatigue and abrasive wear by plastic flow.

  • PDF

Numerical Analysis for Separation of Carbon Dioxide by Hollow Fiber Membrane with Cocurrent Flow (병류흐름의 중공사 분리막에 의한 이산화탄소 분리 수치 해석)

  • Lee Yong-Taek;Song In-Ho;Ahn Hyo-Seong;Lee Young-Jin;Jeon Hyun-Soo;Kim Jeong-Hoon;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.204-212
    • /
    • 2006
  • A numerical analysis was carried out for separation of carbon dioxide from carbon dioxide/nitrogen gas mixture by a polyethersulfone hollow fiber membrane which has shown a good stability against plasticization by carbon dioxide and an excellent separation efficiency fur carbon dioxide from its gas mixture. A computer program for carbon dioxide separation was developed using the Compaq Visual Fortran 6.6 software. Governing module equations were thought to be an initial-value problem and the nonlinear ordinary differential equations were simultaneously solved using the Runge-Kutta-Verner fifth-order method. From results of numerical analysis, the carbon dioxide partial pressure of the feed stream, the pressure ratio of the feed side to the permeate side and the feed gas residence time at the inside of a membrane were found to be very important factors to affect the permeation characteristics of carbon dioxide.

Production of Activated Carbon from Bamboo by Gas Activation Method (기상 활성화법에 의한 대나무 활성탄 제조)

  • 조광주;박영철
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.166-172
    • /
    • 2004
  • The activated carbon was produced from Sancheong bamboo by steam and carbon dioxide gas activation methods. The carbonization of raw material was conducted at 90$0^{\circ}C$ and gas activation reactions were conducted with respect to various conditions. -activation temperature 750-90$0^{\circ}C$, the flow rate of steam 0.5-2g-$H_2O$/g-char$.$hr, the flow rate of carbon dioxide 5-30$m\ell$-$CO_2$/g-char-min and activation time 1-5 hr. The prepared activated carbons were measured yield, the adsorption capacity of iodine and methylene blue, BET specific surface area and pore size distribution. The adsorption capacity of iodine (680.5-1526.1 mg/g) and methylene blue (18.3-221.5 mg/g) increased with creasing activation temperature and activation time. The adsorption capacity of iodine and methylene blue increased with the activation gas quantity in the range of 0.5-1.5g-$H_2O$/g-charㆍhr, 5-18.9$m\ell$-Co$_2$/g-charㆍmin. But those decreased over those range due to the pore shrinkage. The steam activation method was superior in efficiency to carbon dioxide activation method.

ASSESSMENT OF WALL-THINNING IN CARBON STEEL PIPE BY USING LASER-GENERATED GUIDED WAVE

  • Kim, Do-Youn;Cho, Youn-Ho;Lee, Joon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.546-551
    • /
    • 2010
  • The objective of this research is to estimate the crack location and size of a carbon steel pipe by using a laser ultrasound guided wave for the wall thinning evaluation of an elbow. The wall thinning of the carbon steel pipe is one of the most serious problems in nuclear power plants, especially the wall thinning of the carbon steel elbow caused by Flow-Accelerated Corrosion (FAC). Therefore, a non-destructive inspection method of elbow is essential for the nuclear power plants to operate safely. The specimens used in this study were carbon steel elbows, which represented the main elements of real nuclear power plants. The shape of the wall thinning was an oval with a width of 120mm, a length of 80mm, and a depth of 5mm. The L(0,1) and L(0,2) modes variation of the ultrasound guided wave signal is obtained from the response of the laser generation/air-coupled detection ultrasonic hybrid system represent the characteristics of the defect. The trends of these characteristics and signal processing were used to estimate the size and location of wall thinning.

Optimization of Growth Gases for the Low-temperature Synthesis of Carbon Nanotubes (탄소나노튜브의 저온성장을 위한 합성가스의 최적화 연구)

  • Kim, Young-Rae;Jeon, Hong-Jun;Lee, Han-Sung;Goak, Jeung-Choon;Hwang, Ho-Soo;Kong, Byung-Yun;Lee, Nae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.342-349
    • /
    • 2009
  • This study investigated the growth characteristics of carbon nanotubes (CNTs) by changing a period of annealing time and a $C_{2}H_{2}/H_2$ flow ratio at temperature as low as $450^{\circ}C$ with inductively coupled plasma chemical vapor deposition. The 1-nm-thick Fe-Ni-Co alloy thin film served as a catalyst layer for the growth of CNTs, which was thermally evaporated on the 15-nm-thick Al underlayer deposited on the 50-nm-thick Ti diffusion barrier. The annealing at low temperature of $450^{\circ}C$ brought about almost no granulation of the catalyst layer, and the CNT growth was not affected by a period of annealing time. A study of changing the flow rate of $C_{2}H_{2}$ and $H_2$ showed that as the ratio of the $C_{2}H_{2}$ flow rate to the $H_2$ flow rate was lowered, the CNTs were grown to be longer With further decreasing the flow ratio, the length of CNTs reached the maximum and then became shorter. Under the optimized gas flow rates, we successfully synthesized CNTs with a uniform length over a 4-inch Si wafer at $450^{\circ}C$.

Analysis of Natural Organic Matter (NOM) Characteristics in the Geum River (금강 수계 자연유기물 특성 분석)

  • Yu, Soon-Ju;Kim, Chang-Soo;Ha, Sung-Ryong;Hwang, Jong-Yeon;Chae, Min-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.125-131
    • /
    • 2005
  • Natural organic matter(NOM) is defined as the complex matrix of organic material and abundant in natural waters. It affects the performance of unit operations for water purification. Several kinds of analytical indicators such as DOC, specific ultraviolet absorbance(SUVA), apparent molecular weight (AMW), fractionation and high performance size exclusive chromatography(HPSEC) have been used to understand characteristics and variations of NOM. This study aims to evaluate the characteristics of NOM in the Geum River system comprising with stream flows and reservoirs. It was identified that SUVA denoting the portion of humic substance in water ranged within 1.60~3.36. Using resin adsorbents, dissolved organic carbon(DOC) was fractionated into three classes: hydrophobic bases(HOB), hydrophobic acids(HOA) and hydrophilic substances(HI). HI dominates in all samples, collectively accounting for more than 62% of the DOC. HOA was the second dominated fraction and it varied considerably but accounted for about 30% of the DOC. The distribution of high molecular weight(HMW) measured by HPSEC being used to determine the molecular weight distribution of aquatic humic substances was 40.1% and 38.7% in reservoir and stream flow, respectively. The distribution of low molecular weight(LMW) in stream flow was 13.2% higher than that in reservoir. And apparent molecular weight less than 1KDa, which include the molecular weight of hydrophilic organic matter, occupied with 69.2% and 68.2% in stream flow and reservoir, respectively. While the molecular weight of 1 to 100 KDa including humic substances ranged with 18.6% and 21.6% in stream flow and reservoir, respectively. Seasonal variation of refractory dissolved organic carbon was similar to that of SUVA.

The Effects of Flow Velocity on the Adsorption Characteristics of Organic Phosphorus Compounds

  • Kim, Chul-Sung;Lim, Jong-Sun;Baeg, Seung-Jae;Byun, Yong-Gwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.E
    • /
    • pp.19-25
    • /
    • 1998
  • Adsorption characteristics of DMMP and IMPF were investigated using dynamic adsorption method. Adsorbate vapor was forced to Pass at fixed flow rate of 4 mg/I through Cu Cr impregnated activated carbon column at several different flow velocities until the effluent concentrations exceeded 4.0$\times$10$^{-5}$ mg/I. The kinetic adsorption capacity, adsorption kinetic constant, and critical bed weight of the activated carbon were determined for DMMP and IMPF vapors by plotting breakthrough time as a function of carbon weight. A mathematical expression was deduced from our experimental data to represent the relationships between kinetic adsorption capacity and flow velocity. According to our experimental results, the lifetime of DMMP was longer than that of IMPF under the same conditions. Their relationship can be expressed empirically as follows: Tb(DMMP) = 0.9825$\times$Tb(IMPF)-15.368

  • PDF

Analysis on the Pyrolysis Characteristics of Waste Plastics Using Plug Flow Reactor Model (Plug Flow Reactor 모델을 이용한 폐플라스틱의 열분해 특성 해석)

  • Sangkyu, Choi;Yeonseok, Choi;Yeonwoo, Jeong;Soyoung, Han;Quynh Van, Nguyen
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.12-21
    • /
    • 2022
  • The pyrolysis characteristics of high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) were analyzed numerically using a 1D plug flow reactor (PFR) model. A lumped kinetic model was selected to simplify the pyrolysis products as wax, oil, and gas. The simulation was performed in the 400-600℃ range, and the plastic pyrolysis and product generation characteristics with respect to time were compared at various temperatures. It was found that plastic pyrolysis accelerates rapidly as the temperature rises. The amounts of the pyrolysis products wax and oil increase and then decrease with time, whereas the amount of gas produced increases continuously. In LDPE pyrolysis, the pyrolysis time was longer than that observed for other plastics at a specified temperature, and the amount of wax generated was the greatest. The maximum mass fraction of oil was obtained in the order of HDPE, PP, and LDPE at a specified temperature, and it decreased with temperature. Although the 1D model adopted in this study has a limitation in that it does not include material transport and heat transfer phenomena, the qualitative results presented herein could provide base data regarding various types of plastic pyrolysis to predict the product characteristics. These results can in turn be used when designing pyrolysis reactors.