• 제목/요약/키워드: Carbon flow

검색결과 1,399건 처리시간 0.027초

DEPENDENCY OF SINGLE-PHASE FAC OF CARBON AND LOW-ALLOY STEELS FOR NPP SYSTEM PIPING ON PH, ORIFICE DISTANCE AND MATERIAL

  • Moon, Jeong-Ho;Chung, Hung-Ho;Sung, Ki-Woung;Kim, Uh-Chul;Rho, Jae-Seong
    • Nuclear Engineering and Technology
    • /
    • 제37권4호
    • /
    • pp.375-384
    • /
    • 2005
  • To investigate the flow-accelerated corrosion (FAC) dependency of carbon steel (A106 Gr. B) and low-alloy steels (1Cr-1/2Mo, 21/4Cr-1Mo) on pH, orifice distance, and material, experiments were carried out. These experiments were performed using a flow velocity of 4 m/sec (partly 9 m/sec) at pH $8.0\~10.0$ in an oxygen-free aqueous solution re-circulated in an Erosion-Corrosion Test Loop at $130^{\circ}\;{\ldots}$ for 500 hours. The weight loss of the carbon steel specimens appeared to be positively dependent on the flow velocity. That of the carbon and low-alloy steel specimens also showed to be distinguishably dependent on the pH. At pH levels of $8.0\~9.5$ it decreased, but increased from 9.5 to 10.0. Utility water chemistry personnel should carefully consider this kind of pH dependency to control the water system pH to mitigate FAC of the piping system material. The weight loss of the specimens located further from the orifice in the distance range of $6.8\~27.2$ mm was shown to be greater, except for 21/4Cr-1Mo, which showed no orifice distance dependency. Low alloy steel specimens exhibited a factor of two times better resistance to FAC than that of the carbon steel. Based on this kind of FAC dependency of the carbon and low-alloy steels on the orifice distance and material, we conclude that it is necessary to alternate the composition of the secondary piping system material of NPPs, using low-alloy steels, such as 21/4Cr-1Mo, particularly when the system piping has to be replaced.

바나듐 레독스 흐름 전지용 복합재료 분리판 개발 (Development of Composite Bipolar Plate for Vanadium Redox Flow Battery)

  • 임준우
    • Composites Research
    • /
    • 제34권3호
    • /
    • pp.148-154
    • /
    • 2021
  • 탄소/에폭시 복합재료 분리판(BP)은 높은 기계적 특성과 생산성으로 인해 바나듐 레독스 흐름전지(VRFB)의 기존 흑연 분리판을 대체할 가능성이 있는 BP이다. 다기능 구조인 탄소/에폭시 복합재료 BP는 계면접촉저항(ICR)을 줄이기 위해 흑연 코팅 또는 추가 표면 처리가 필요하다. 그러나 팽창 흑연 코팅은 VRFB 작동 조건에서 낮은 내구성을 가지며 별도의 표면 처리는 추가 비용이 발생한다는 단점이 있다. 본 연구에서는 폴리에스테르 직물을 적용하여 탄소/에폭시 복합재료 BP 표면의 잉여 수지층을 균일하게 제거하여 탄소섬유를 노출시키는 잉여 수지 흡수법을 개발하였다. 이 방법은 BP 표면에 탄소섬유를 노출하여 ICR을 감소시킬 뿐만 아니라 탄소 펠트 전극을 효과적으로 고정할 수 있는 고유한 도랑 패턴을 형성한다. 잉여 수지 흡수법에 의해 제작된 복합재료 BP의 산성 환경 내구성, 기계적 특성 및 기체 투과도에 대해 실험적으로 검증하였다.

중수로 기기냉각수 열교환기 내부 유동 해석 (Analysis of Internal Flow for Component Cooling Water Heat Exchanger in CANDU Nuclear Power Plants)

  • 송석윤
    • 한국압력기기공학회 논문집
    • /
    • 제8권2호
    • /
    • pp.33-41
    • /
    • 2012
  • The component cooling water heat exchangers are critical components in a nuclear power plant. As the operation years of the heat exchanger go by, the maintenance costs required for continuous operation also increase. Most heat exchangers have carbon steel shells, tube support plates and flow baffles. The titanium tube is susceptible to flow induced vibration. The damage on carbon steel tube support rod and titanium tube around cooling water entrance area is inevitable. Therefore, analysis of internal flow around the component cooling water entrance and tube channel is a good opportunity to seek for failure prevention practice and maintenance method. The numerical study was carried out by FLUENT code to find out the causes of tube failure and its location.

Empirical relationship between band gap and synthesis parameters of chemical vapor deposition-synthesized multiwalled carbon nanotubes

  • Obasogie, Oyema E.;Abdulkareem, Ambali S.;Mohammed, Is'haq A.;Bankole, Mercy T.;Tijani, Jimoh. O.;Abubakre, Oladiran K.
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.72-80
    • /
    • 2018
  • In this study, an empirical relationship between the energy band gap of multi-walled carbon nanotubes (MWCNTs) and synthesis parameters in a chemical vapor deposition (CVD) reactor using factorial design of experiment was established. A bimetallic (Fe-Ni) catalyst supported on $CaCO_3$ was synthesized via wet impregnation technique and used for MWCNT growth. The effects of synthesis parameters such as temperature, time, acetylene flow rate, and argon carrier gas flow rate on the MWCNTs energy gap, yield, and aspect ratio were investigated. The as-prepared supported bimetallic catalyst and the MWCNTs were characterized for their morphologies, microstructures, elemental composition, thermal profiles and surface areas by high-resolution scanning electron microscope, high resolution transmission electron microscope, energy dispersive X-ray spectroscopy, thermal gravimetry analysis and Brunauer-Emmett-Teller. A regression model was developed to establish the relationship between band gap energy, MWCNTs yield and aspect ratio. The results revealed that the optimum conditions to obtain high yield and quality MWCNTs of 159.9% were: temperature ($700^{\circ}C$), time (55 min), argon flow rate ($230.37mL\;min^{-1}$) and acetylene flow rate ($150mL\;min^{-1}$) respectively. The developed regression models demonstrated that the estimated values for the three response variables; energy gap, yield and aspect ratio, were 0.246 eV, 557.64 and 0.82. The regression models showed that the energy band gap, yield, and aspect ratio of the MWCNTs were largely influenced by the synthesis parameters and can be controlled in a CVD reactor.

Rotating cylinder를 이용한 탄소강의 유동가속부식 평가 (Evaluation of Flow Accelerated Corrosion of Carbon Steel with Rotating Cylinder)

  • 박태준;이은희;김경모;김홍표
    • Corrosion Science and Technology
    • /
    • 제11권6호
    • /
    • pp.257-262
    • /
    • 2012
  • Flow accelerated corrosion (FAC) of the carbon steel piping in nuclear power plants (NPPs) has been major issue in nuclear industry. Rotating cylinder FAC test facility was designed and fabricated and then performance of the facility was evaluated. The facility is very simple in design and economic in fabrication and can be used in material and chemistry screening test. The facility is equipped with on line monitoring of pH, conductivity, dissolved oxygen(DO), and temperature. Fluid velocity is controlled with rotating speed of the cylinder with a test specimen. FAC test of SA106 Gr. B carbon steel under 4 m/s flow velocity was performed with the rotating cylinder at DO concentration of less than 1 ppb and of 1.3 ppm. Also a corrosion test of the carbon steel at static condition, that is at zero fluid velocity, of test specimen and solution was performed at pH from 8 to 10 for comparison with the FAC data. For corrosion test in static condition, the amount of non adherent corrosion product was almost constant at pH ranging from 8 to 10. But adherent corrosion product decreased with increasing pH. This trend is consistent with decrease of Fe solubility with an increase in pH. For FAC test with rotating cylinder FAC test facility, the amount of non adherent corrosion product was also almost same for both DO concentrations. The rotating cylinder FAC test facility will be further improved by redesigning rotating cylinder and FAC specimen geometry for future work.

Urea를 이용한 바나듐 레독스 흐름 전지용 카본 펠트 전극 개발 (Development of Carbon Felt Electrode Using Urea for Vanadium Redox Flow Batteries)

  • 김소연;김한성
    • Korean Chemical Engineering Research
    • /
    • 제57권3호
    • /
    • pp.408-412
    • /
    • 2019
  • 본 연구에서는 urea를 이용해 질소 도핑된 카본 펠트 전극을 제조하고 이를 바나듐 레독스 흐름 전지용 전극으로 적용하였다. Urea는 암모니아 보다 취급이 용이할 뿐 아니라 고온 열분해를 통해 $NH_2$ 라디칼이 발생하여 탄소 표면에 질소 작용기를 만들고 이는 바나듐 이온의 산화/환원 반응을 향상시키는 활성점(active site)로 작용한다. Urea로 활성화된 카본 펠트 전극은 $150mA/cm^2$의 전류 밀도에서 14.9 Ah/L의 방전 용량을 보였으며 이는 산소작용기로 활성화된 카본 펠트(OGF) 및 비활성화 카본 펠트(GF)보다 각각 23% 및 187% 더 높았다. 이러한 결과는 urea로 활성화된 카본 펠트 전극이 레독스 흐름 전지용 전극 소재로 사용될 수 있는 가능성을 보여준다.

Energy Efficiency Improvement of Vanadium Redox Flow Battery by Integrating Electrode and Bipolar Plate

  • Kim, Min-Young;Kang, Byeong-Su;Park, Sang-Jun;Lim, Jinsub;Hong, Youngsun;Han, Jong-Hun;Kim, Ho-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권3호
    • /
    • pp.330-338
    • /
    • 2021
  • An integral electrode-bipolar plate assembly, which is composed of electrode, conductive adhesive film (CAF) and bipolar plate, has been developed and evaluated for application with a vanadium redox flow battery (VRB) to decrease contact resistance between electrode and bipolar plate. The CAF, made of EVA (ethylene-vinyl-acetate) material with carbon black or CNT (Carbon Nano Tube), is applied between the electrode and the bipolar plate to enable an integral assembly by adhesion. In order to evaluate the integral assembly of VRB by adhesive film, the resistivity of integral assembly and the performance of single cell were investigated. Thus, it was verified that the integral assembly is applicable to redox flow battery. Through resistance and contact resistance of bare EVA and CAF films on bipolar plate were changed. Among the adhesive films, CAF film coated with carbon black showed the lowest value in through resistance, and CAF film coated with CNT showed the lowest value in contact resistance, respectively. The efficiency of VRB single cell was improved by applying CAF films coated with carbon black and CNT, resulting in the reduced overvoltage in charging process. Therefore, the energy efficiency of both CAF films, about 84%, were improved than that of blank cell, about 79.5 % under current density at 40 mA cm-2. The energy efficiency of the two cells were similar, but carbon black coated CAF improved the coulomb efficiency and CNT coated CAF improved the voltage efficiency, respectively.

이산화탄소 해양격리 심해주입시스템의 초기설계 (Preliminary Design of a Deep-sea Injection System for Carbon Dioxide Ocean Sequestration)

  • 최종수;홍섭;김형우;여태경
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.265-268
    • /
    • 2006
  • The preliminary design of a deep-sea injection system for carbon dioxide ocean sequestration is performed. Common functional requirements for a deep-sea injection system of mid-depth type and lake type are determined, Liquid transport system, liquid storage system and liquid injection system are conceptually determined for the functional requirements. For liquid injection system, the control of flow rate and temperature of liquid $CO_2$ in the injection pipe is needed in the view of internal flow. The function of depressing VIV(Vortex Induced Vibration) is also required in the view of dynamic stability of the injection pipe. A case study is performed for $CO_2$ sequestration capacity of 10 million tons per year. In this study, the total number of injection ships, the flow rate of liquid $CO_2$ and the configuration of a injection pipe are designed. The static structural analysis of the injection pipe is also performed. Finally the preliminary design of a deep-sea injection system is proposed.

  • PDF

Change the Properties of Amorphous Carbon Hardmask Film Prepared with the Variation of Process Parameters in Plasma Enhanced Chemical Vapor Depostion Systems

  • Kim, Seok Hwan;Yeo, Sanghak;Yang, Jaeyoung;Park, Keunoh;Hur, Gieung;Lee, Jaeho;Lee, Jaichan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.381.2-381.2
    • /
    • 2014
  • In this study the amorphous carbon films were deposited by PECVD at the substrate temperature range of 250 to $600^{\circ}C$, and the process conditions of higher and lower precursor flow rate, respectively. The temperature was a main parameter to control the density and mirco-structures of carbon films, and their's properties depended with the process temperatrue are changed by controlling precursor flow rate. The precursor feeding rate affect on the plasma ion density and a deposition reactivity. This change of film properties was obtained the instrinsic stress, FT-IR & Raman analysis, refractive index (RI) and ext. coef. (k) measured by ellipsometer. In the process conditions of lower and higher flow rate of precursor it had a different intrinsic stress as a function of the substrate temperature.

  • PDF

물의 전기분해를 이용한 납-흡착 활성탄으로부터 납의 제거 (Removal of Lead from Lead-loaded Activated Carbon Using Water Electrolysis)

  • 김부웅;성경식;최연석
    • 공업화학
    • /
    • 제10권6호
    • /
    • pp.929-933
    • /
    • 1999
  • 염산 수용액을 전해액으로 하여 물의 전기분해가 일어나는 조건에서 양극에 충전된 납-흡착 활성탄으로부터 납의 제거 실험결과, 흐름 조건으로서 양극부와 음극부의 유량이 동일한 경우 전체 유량 10 mL/min이 적당하며 전류 증가는 양극에서의 pH를 감소시키고 양극에서의 pH 감소가 납의 제거율 증가를 가져옴을 알 수 있었다. 물의 전기분해를 이용하는 본 방법은 산세척법에 비하여 약품 사용량을 줄이면서 납-흡착 활성탄으로부터 납을 효과적으로 제거할 수 있는 방법임을 알 수 있었다.

  • PDF