• 제목/요약/키워드: Carbon films

검색결과 952건 처리시간 0.028초

질화탄소막을 이용한 MIS 캐패시터의 정전용량 - 전압 특성 (Capacitance - Voltage Characteristics of MIS Capacitors Using Carbon Nitride Films)

  • 하세근;이지공;이성필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.84-87
    • /
    • 2003
  • Carbon nitride ($CN_x$) films were prepared by reactive RF magnetron sputtering system with DC bias at various deposition conditions and the electrical properties were investigated. The films were characterized by fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The metal-insulator-semiconductor (MIS) capacitor which has $Al/CN_x/Si$ structure was designed and fabricated to investigate the capacitance-voltage (C-V) characteristics. Dielectric constant of carbon nitride films is very small.

  • PDF

결정성 질화탄소막의 습도 감지특성에 관한 연구 (A study on the humidity sensing properties of crystalline carbon nitride films)

  • 이지공;하세근;김정훈;이성필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.88-91
    • /
    • 2003
  • Crystalline carbon nitride films have been attempted for an application of humidity sensors. The films were deposited on $Al_2O_3$ substrate having interdigitated electrodes by reactive RF magnetron sputtering system. The film revealed a good humidity-resistance characteristics as well as humidity-capacitance ones in the humidity range of $10\;{\sim}\;95\;RH(%)$. Temperature dependence was also investigated. These results suggest that carbon nitride film have a possibility for a new humidity-sensitive materials.

  • PDF

CFUBM Sputtering법으로 증착시킨 티타늄이 첨가된 비정질 탄소 박막의 기계적 특성 연구 (Mechanical Properties of Ti doped Amorphous Carbon Films prepared by CFUBM Sputtering Method)

  • 조형준;박용섭;김형진;최원석;홍병유
    • 한국전기전자재료학회논문지
    • /
    • 제20권8호
    • /
    • pp.706-710
    • /
    • 2007
  • Ti-containing amorphous carbon (a-C:Ti) films shows attractive mechanical properties such as low friction coefficient, good adhesion to various substrate and high wear resistance. The incorporation of titanium in a-C films is able to improve the electrical conductivity, friction coefficient and adhesion to various substrates. In this study, a-C:Ti films were depositied on Si wafer by closed-field unbalanced magnetron (CFUBM) sputtering system composed two targets of carbon and titanium. The tribological properties of a-C:Ti films were investigated with the increase of DC bias voltage from 0 V to - 200 V. The hardness and elastic modulus of films increase with the increase of DC bias voltage and the maximum hardness shows 21 GPa. Also, the coefficient of friction exhibites as low as 0.07 in the ambient. In the result, the a-C:Ti film obtained by CFUBM sputtering method improved the tribological properties with the increase of DC bias volatage.

생체 적합 소재 응용을 위한 비대칭 마그네트론 스퍼터링으로 제작된 Ni 도핑된 탄소 박막의 제조 및 특성 (Fabrication and Characteristics of Ni Doped Carbon Thin Films Prepared by Unbalanced Magnetron Sputtering for the Application of Biomaterials)

  • 김광택;박용섭
    • 한국전기전자재료학회논문지
    • /
    • 제31권1호
    • /
    • pp.40-43
    • /
    • 2018
  • Various Ni-doped carbon (C : Ni) thin films were fabricated using different Ni target power densities by unbalanced magnetron sputtering (UBM). The effects of target power density on the structural, physical, surface, and electrical properties of C : Ni films were investigated. The UBM C : Ni thin films exhibited uniformly smooth surfaces. The rms surface roughness and friction coefficient values of the C : Ni films decreased with the increase in target power density. The physical properties of the films such as hardness and elastic moduli increased while their electrical properties such as resistivity decreased with the increase in the target power density. These results show that an increase of the power density leads to an increase in the proportion of Ni and nanocrystallization of the amorphous carbon film; this contributes to the changes observed in the physical and electrical characteristics.

전기화학 프로세스에 의한 Carbon 특성 (Electric Properties of Carbon Using Electrochemical Process)

  • 이상헌
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.388-389
    • /
    • 2006
  • Electro-deposition of carbon film on silicon substrate in methanol solution was carried out with various current density, solution temperature and electrode spacing between anode and cathode. The carbon films with smooth surface morphology and high electrical resistance were formed when the distance between electrode was relatively wider. The electrical resistance of the carbon films were independent of both current density and solution temperature.

  • PDF

전기화학 Carbon Film 합성 (Fabrication of Carbon Thin Film by Electrochemical Method)

  • 이상헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 Techno-Fair 및 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.128-129
    • /
    • 2007
  • Electrochemical method of carbon film on silicon substrate in methanol solution was carried out with various current density, solution temperature and electrode spacing between anode and cathode. The carbon films with smooth surface morphology and high electrical resistance were formed when the distance between electrode was relatively wider. The electrical resistance of the carbon films were independent of both current density and solution temperature.

  • PDF

전도성 스퍼터링 탄소전극을 사용한 TCO-less 염료감응형 태양전지의 특성에 관한 연구 (A Study on the TCO-less Dye-Sensitized Solar Cell Fabricated with Using Conductive Sputtering Carbon Electrodes)

  • 주용환;김남훈;박용섭
    • 한국전기전자재료학회논문지
    • /
    • 제29권11호
    • /
    • pp.725-728
    • /
    • 2016
  • We investigated the characterizations of carbon films fabricated by dual magnetron sputtering under various film thickness for the electrodes in TCO-less DSSC (dye-sensitized solar cells). Carbon films prepared at various conditions were exhibited smooth and uniform surfaces without defects. Also, the rms surface roughness of carbon films was decreased from 2.25 nm to 1.0 nm with the increase of film thickness. The sheet resistance as the electrical properties are improved from $11.2{\times}10^{-3}$ to $2.28{\times}10^{-3}$ with the increase of film thickness. In the results, the performance of TCO-less DSSC critically depended on the film thickness of working electrodes, indicating the conductivity of carbon films.

Synthesis and Properties of Polyimide Composites Containing Graphene Oxide Via In-Situ Polymerization

  • Zhu, Jiadeng;Lee, Cheol-Ho;Joh, Han-Ik;Kim, Hwan Chul;Lee, Sungho
    • Carbon letters
    • /
    • 제13권4호
    • /
    • pp.230-235
    • /
    • 2012
  • In this study, reduced graphene oxide/polyimide (r-GO/PI) composite films, which showed significant enhancement in their electrical conductivity, were successfully fabricated. GO was prepared from graphite using a modified Hummers method. The GO was used as a nanofiller material for the preparation of r-GO/PI composites by in-situ polymerization. An addition of 20 wt% of GO led to a significant decrease in the volume resistivity of composite films by less than nine orders of magnitude compared to that of pure PI films due to the electrical percolation networks of reduced GO created during imidization within the films. A tensile test indicated that the Young's modulus of the r-GO/PI composite film containing 20 wt% GO increased drastically from 2.3 GPa to 4.4 GPa, which was an improvement of approximately 84% compared to that of pure PI film. In addition, the corresponding tensile strength was found to have decreased only by 12%, from 113 MPa to 99 MPa.

Significant enhancement of critical current density by effective carbon-doping in MgB2 thin films

  • Ranot, Mahipal;Lee, O.Y.;Kang, W.N.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권2호
    • /
    • pp.12-15
    • /
    • 2013
  • The pure and carbon (C)-doped $MgB_2$ thin films were fabricated on $Al_2O_3$ (0001) substrates at a temperature of $650^{\circ}C$ by using hot-filament-assisted hybrid physical-chemical vapor deposition technique. The $T_c$ value for pure $MgB_2$ film is 38.5 K, while it is between 30 and 35 K for carbon-doped $MgB_2$ films. Expansion in c-axis lattice parameter was observed with increase in carbon doping concentration which is in contrast to carbon-doped $MgB_2$ single crystals. Significant enhancement in the critical current density was obtained for C-doped $MgB_2$ films as compared to the undoped $MgB_2$ film. This enhancement is most probably due to the incorporation of C into $MgB_2$ and the high density of grain boundaries, both help in the pinning of vortices and result in improved superconducting performance.

XPS Investigation and Field Emission Property of the Ar Plasma Processed Carbon Nanotube Films

  • Lee, Sun-Woo;Lee, Boong-Joo;Oda, Tetsuji
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권2호
    • /
    • pp.52-56
    • /
    • 2008
  • Carbon nanotube films were fabricated by the catalytic CVD method. Plasma processed time effects on the field emission property were studied. The atomic structure was observed by using X-ray photoelectron spectroscopy (XPS). The surface composition changes were observed on the plasma processed CNT films. The O1s/C1s signal ratio and the Fls/Cls signal ratio changed from 1.1 % to 24.65 % and from 0 % to 3.1 % with plasma process time, respectively. We could guess it from these results that the Ar plasma process could change the surface composition effectively. In the case of the original-CNT film, no carbon shift was observed. In the case of the Ar plasma processed CNT films, however the oxygen related carbon shifts were observed. This oxygen related carbon shift at higher binding energy implies the increment of amount of the oxygen. It's possible that the increment of these bonds between carbon and oxygen results in the improvement of field emission performance.