• Title/Summary/Keyword: Carbon films

Search Result 952, Processing Time 0.034 seconds

Humidity Dependence of the Residual Stress of Diamond-like Carbon Film (습도에 따른 다이아몬드성 카본필름의 잔류응력 변화에 대한 연구)

  • Lee Young-Jin;Kim Tae-Young;Lee Kwang-Ryeol;Yang In-Sang
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.4
    • /
    • pp.157-163
    • /
    • 2004
  • Dependence of residual compressive stress of diamond-like carbon (DLC) films on relative humidity was investigated. Polymeric, graphitic and diamond-like carbon films were prepared by r.f.-PACVD using methane or benzene with the negative self bias voltage of the substrate ranging from -100 to -800 V. In-situ measurements of the residual stress were carried out in an environment chamber where the relative humidity was varied from 10% to 90%. In dense DLC film of high residual compressive stress and hardness, we could not observe any change in the residual compressive stress with relative humidity. However, in the cases of graphitic and polymeric DLC films, abrupt change in the residual stress occurred by changing the relative humidity. The quantity of the stress change was inversely proportional to the film thickness, which means that the stress change with humidity is not due to the penetration of the water molecule into the film structure, but due to surface interaction between water molecules and film surface.

Improved Characteristics of Carbon Nanotube Transparent Electrode Films Using Acid Treatments (산 처리를 이용한 탄소 나노튜브 투명전극 특성 향상)

  • Jeon, Joo-Hee;Choi, Ji-Hyuk;Moon, Kyeong-Ju;Lee, Tae-Il;Moon, Ho-Jun;Kim, Hyung-Yeol;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.51-54
    • /
    • 2010
  • Transparent conductive films of single wall carbon nanotube (SWCNT) were prepared by spray coating method. The effect of acid treatment on the SWCNT films was investigated. The field emission scanning electron microscope (FESEM) shows that acid treatment can remove dispersing agent. The electrical and optical properties of acid-treated films were enhanced compared with those of as deposited SWCNT films. Nitric acid ($HNO_3$), sulfuric acid ($H_2SO_4$), nitric acid:sulfuric acid (3:1) were used for post treatment. Although all solutions reduced sheet resistance of CNT films, nitric acid can improve electrical characteristics efficiently. During acid treatment, transmittance was increased continuously with time. But the sheet resistance was decreased for the first 20 minutes and then increased again. Post-treated SWCNT films were transparent (85%) in the visible range with sheet resistance of about $162{\Omega}/sq$. In this paper we discuss simple fabrication, which is suitable for different types of large-scale substrates and simple processes to improve properties of SWCNT films.

Effect of Si Addition on the Corrosion Resistance of Diamond-Like Carbon (DLC) Films

  • Kim, Woo-Jung;Kim, Jung-Gu;Park, Se-Jun;Lee, Kwang-Ryeol
    • Corrosion Science and Technology
    • /
    • v.4 no.6
    • /
    • pp.226-230
    • /
    • 2005
  • Si incorporated diamond-like carbon (Si-DLC) films ranging from 0 to 2 at.% contents were deposited on STS 316L substrates for orthopedic implants by means of r.f. plasma-assisted chemical vapor deposition (r.f. PACVD) technique, using mixtures of benzene ($C_6H_6$) and silane ($SiH_4$) as the precursor gases. This study provides the reliable and quantitative data for assessment of the effect of Si incorporation on corrosion property in the simulated body fluid environment through the electrochemical test. It was found that corrosion to resistance of Si-DLC coatings with increasing Si content are improved owing to high $sp^3$ bonding.

Electrochemical Oxidations of Alcohols on Platinum/Carbon Nanotube Composites

  • Kim, Jungsoo;Nam, Dae-Geun;Oh, Weontae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.125-129
    • /
    • 2013
  • Composites of platinum and multiwalled carbon nanotubes (MWNTs) were prepared in various reduction conditions and characterized using cyclic voltammetry. The MWNTs were functionalized with carboxylic acid and/or hydroxyl groups in acidic solutions prior to the formation of MWNT-Pt composites. Platinum nanoparticles were deposited onto the chemically-oxidized MWNTs in 1-propanol and 1,3-propanediol. The reduction of Pt precursors in other solutions could induce differences in their morphologies in composite thin films. The morphologies of MWNTs with Pt deposited were dependent on the reduction solutions, and the electrocatalytic activities on alcohols changed accordingly. The electrochemical activities of the as-prepared MWNT-Pt thin films on common alcohols such as methanol and ethanol were investigated.

Effects of Iron-Reducing Bacteria on Carbon Steel Corrosion Induced by Thermophilic Sulfate-Reducing Consortia

  • Valencia-Cantero, Eduardo;Pena-Cabriales, Juan Jose
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.280-286
    • /
    • 2014
  • Four thermophilic bacterial species, including the iron-reducing bacterium Geobacillus sp. G2 and the sulfate-reducing bacterium Desulfotomaculum sp. SRB-M, were employed to integrate a bacterial consortium. A second consortium was integrated with the same bacteria, except for Geobacillus sp. G2. Carbon steel coupons were subjected to batch cultures of both consortia. The corrosion induced by the complete consortium was 10 times higher than that induced by the second consortium, and the ferrous ion concentration was consistently higher in iron-reducing consortia. Scanning electronic microscopy analysis of the carbon steel surface showed mineral films colonized by bacteria. The complete consortium caused profuse fracturing of the mineral film, whereas the non-iron-reducing consortium did not generate fractures. These data show that the iron-reducing activity of Geobacillus sp. G2 promotes fracturing of mineral films, thereby increasing steel corrosion.

Inductively coupled nanocomposite wireless strain and pH sensors

  • Loh, Kenneth J.;Lynch, Jerome P.;Kotov, Nicholas A.
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.531-548
    • /
    • 2008
  • Recently, dense sensor instrumentation for structural health monitoring has motivated the need for novel passive wireless sensors that do not require a portable power source, such as batteries. Using a layer-by-layer self-assembly process, nano-structured multifunctional carbon nanotube-based thin film sensors of controlled morphology are fabricated. Through judicious selection of polyelectrolytic constituents, specific sensing transduction mechanisms can be encoded within these homogenous thin films. In this study, the thin films are specifically designed to change electrical properties to strain and pH stimulus. Validation of wireless communications is performed using traditional magnetic coil antennas of various turns for passive RFID (radio frequency identification) applications. Preliminary experimental results shown in this study have identified characteristic frequency and bandwidth changes in tandem with varying strain and pH, respectively. Finally, ongoing research is presented on the use of gold nanocolloids and carbon nanotubes during layer-by-layer assembly to fabricate highly conductive coil antennas for wireless communications.

Effects of Thermal Annealing on the Properties of Amorphous Carbon Nitride Films Deposited by PECVD (PECVD로 제조된 비정질 질화탄소 박막의 물성에 미치는 열처리 효과)

  • Moon, Hyung-Mo;Kim, Sang-Sub
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.303-308
    • /
    • 2003
  • Amorphous carbon nitride films deposited on Si(001) substrates by a plasma enhanced chemical vapor deposition (PECVD) technique using CH$_4$and $N_2$as reaction gases were thermally annealed at various temperatures under$ N_2$atmosphere, then their physical properties were investigated particularly as a function of annealing temperature. Above $600^{\circ}C$ a small amount of crystalline $\beta$-$C_3$$N_4$ phase evolves, while the film surface becomes very rough due to agglomeration of fine grains on the surface. As the annealing temperature increases, both the hardness and the $sp^3$ bonding nature are enhanced. In contrast to our expectation, higher annealing temperature results in a relatively higher friction mainly due to big increase in roughness at that temperature.

Noncovalent Titania Wrapping of Single-Walled Carbon Nanotubes for Environmentally Stable Transparent Conductive Thin Films (환경신뢰성이 확보된 투명전도성 필름을 위한 비공유 걸합에 의한 단일벽 탄소나노튜브의 $TiO_2$ 코팅)

  • Han, Joong-Tark;Kim, Jun-Suk;Jeong, Hae-Deuk;Jeong, Hee-Jin;Jeong, Seung-Yol;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.20-20
    • /
    • 2010
  • We present a simple process for the fabrication of high performance transparent conducting films that contain single-walled carbon nanotubes (SWCNTs) noncovalently coated with an ultrathin titania layer. The hydrophobic interactions between nanotube surfaces and the acetylacetone (acac) ligands used to stabilize the $TiO_2$ precursor provide an interesting alternative method for noncovalently coating the SWCNTs with a titania layer. The ultrathin titania layer on SWCNTs prevented the oxidation of functionalized SWCNTs at high temperatures, and protected against water molecule absorption.

  • PDF

Noncovalent Titania Wrapping of Single-Walled Carbon Nanotubes for Environmentally Stable Transparent Conductive Thin Films (환경신뢰성이 확보된 투명전도성 필름을 위한 비공유 결합에 의한 단일벽 탄소나노튜브의 $TiO_2$ 코팅)

  • Han, Joong-Tark;Kim, Jun-Suk;Jeong, Hee-Jin;Jeong, Seung-Yol;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.279-279
    • /
    • 2010
  • We present a simple process for the fabrication of high performance transparent conducting films that contain single-walled carbon nanotubes (SWCNTs) noncovalently coated with an ultrathin titania layer. The hydrophobic interactions between nanotube surfaces and the acetylacetone (acac) ligands used to stabilize the $TiO_2$ precursor provide an interesting alternative method for noncovalently coating the SWCNTs with a titania layer. The ultrathin titania layer on SWCNTs prevented the oxidation of functionalized SWCNTs at high temperatures, and protected against water molecule absorption.

  • PDF

Effect of environment on the tribological behavior of Si-incorporated diamond-like carbon films (실리콘이 첨가된 다이아몬드상 카본 필름의 트라이볼로지적 특성에 미치는 환경변화의 영향)

  • 양승호;공호성;이광렬;박세준;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.42-48
    • /
    • 1999
  • An experimental study was performed to discover the effect of environment on the tribological behavior of Si-incorporated diamond-like carbon(Si-DLC) film slid on a steel ball. The films were deposited on Si(100) wafers from radio-frequency glow discharge of mixtures of benzene and dilute silane gases. Experiments using a ball-on-disk test-rig was performed under vacuum, dry air and ambient air conditions. It was observed that coefficient of friction was decreased as the environmental condition changes from vacuum, to dry air. It was also observed that the coefficient of friction decreased with increasing silicon concentration in the film. Chemical analyses of debris suggested that the low and stable friction coefficient is closely related to the silicon rich oxide debris and the rolling action.

  • PDF