• Title/Summary/Keyword: Carbon film

Search Result 1,330, Processing Time 0.03 seconds

Characteristics of Vanadium Oxide Grown by Atomic Layer Deposition for Hole Carrier Selective Contacts Si Solar Cells (실리콘 전하선택접합 태양전지 적용을 위한 원자층 증착법으로 증착된 VOx 박막의 특성)

  • Park, Jihye;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.660-665
    • /
    • 2020
  • Silicon heterojunction solar cells can achieve high conversion efficiency with a simple structure. In this study, we investigate the passivation characteristics of VOx thin films as a hole-selective contact layer using ALD (atomic layer deposition). Passivation characteristics improve with iVoc (implied open-circuit voltage) of 662 mV and minority carrier lifetime of 73.9 µs after post-deposition annealing (PDA) at 100 ℃. The improved values are mainly attributed to a decrease in carbon during the VOx thin film process after PDA. However, once it is annealed at temperatures above 250 ℃ the properties are rapidly degraded. X-ray photoelectron spectroscopy is used to analyze the chemical states of the VOx thin film. As the annealing temperature increases, it shows more formation of SiOx at the interface increases. The ratio of V5+ to V4+, which is the oxidation states of vanadium oxide thin films, are 6:4 for both as-deposition and annealing at 100 ℃, and 5:5 for annealing at 300 ℃. The lower the carbon content of the ALD VOx film and the higher the V5+ ratio, the better the passivation characteristics.

Diamond-like Carbon Protective Anti-reflection Coating for Solar Cell Application (태양전지 응용을 위한 DLC(Diamond-like Carbon) 반사방지막의 특성 분석)

  • Choi, Won-Seok;Jeon, Young-Sook;Kim, Kyung-Hae;Yi, Jun-Sin;Heo, Jin-Hee;Chung, Il-Sub;Hong, Byung-You
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1737-1739
    • /
    • 2004
  • Diamond-like carbon (DLC) films were prepared with RF-PECVD (Plasma Enhanced Chemical Vapor Deposition) method on coming glass and silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gases. We examined the effects of $CH_4$ to $H_2$ ratios on tribological and optical properties of the DLC films. The structure and surface morphology of the films were examined using Raman spectroscopy and atomic force microscopy (AFM). The hardness of the DLC film was measured with nano-indentor. The optical properties of DLC thin film were investigated by UV/VIS spectrometer and ellipsometry. And also, solar cells were fabricated using DLC as antireflection coating before and after coating DLC on silicon substrate and compared the efficiency.

  • PDF

The preparation of ultra hard nitrogenated DLC film by $N_2^+$ implantation

  • Olofinjana, A.O.;Chen, Z.;Bell, J.M.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.165-166
    • /
    • 2002
  • Hydrogen free diamond like carbon (DLC) films were prepared on steel substrates by using a single ion beam in a configuration that allowed sputtering of a graphite target and at the same time allowed to impact the substrate at a grazing angle. The DLC films so prepared have improved properties with increased disorder and with modest hardness that is slightly higher than previously reported values. We have studied the effects of $N_2^+$ ions implantation on such films. It is found that the implantations of nitrogen ions into DLC films lead to chemical modifications that allowed N atoms to be incorporated into the carbon network to produce a nitrogenated DLC. Nano-indentation experiments indicated that the nitrogenated films have consistently higher hardnesses ranging from 30 to 45GPa, which represents a considerable increase in surface hardness, compared with non-nitrogenated precursor films. The investigations by XPS and Raman spectroscopy suggests that the $N_2^+$ implanted DLCs had undergone both chemical and structural modifications through the incorporation of N atoms and the increased ratio of $sp^3/sp^2$ type bonding. The observed high hardness was therefore attributable to these structural and chemical modifications. This result has implication for the preparation of super hard wear resistant films required for tribological functions in devices.

  • PDF

A Study on Detailed Structural Variation of Diamond-like Carbon Thin Film by a Novel Raman Mapping Method (라만 맵핑 방식을 사용한 다이아몬드상 카본박막의 미세구조변화에 관한 연구)

  • Choi, Won-Seok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.618-623
    • /
    • 2006
  • Hydrogenated Diamond-like carbon (DLC) films were prepared by the radio frequency plasma enhanced chemical vapor deposition (RF PECVD) method on silicon substrates using methane $(CH_4)$ and hydrogen $(H_2)$ gas. The wear track on the DLC films was examined after the ball-on disk (BOD) measurement with a Raman mapping method. The BOD measurement of the DLC films was performed for 1 to 3 hours with a 1-hour step time. The sliding traces on the hydrogenated DLC film after the BOD measurement were also observed using an optical microscope. The surface roughness and cross-sectional images of the wear track were obtained using an atomic force microscope (AFM). The novel Raman mapping method effectively shows the graphitization of DLC films of $300{\mu}m\times300{\mu}m$ area according to the sliding time by G-peak positions (intensities) and $I_D/I_G$ ratios.

The Influence of the Temperature Increase on the Tribological Behavior of DLC Films by RF-PECVD (RF-PECVD로 증착된 DLC 박막의 온도 변화에 따른 트라이볼로지 특성)

  • Lee Young-Ze;Cho Yong-Kyung;Shin Yun-Ha
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.127-130
    • /
    • 2006
  • DLC (Diamond Like Carbon) films show very desirable surface interactions with high hardness, low friction coefficient, and good wear-resistance properties. The friction behavior of hydrogenated DLC film is dependent on tribological environment, especially surrounding temperature. In this work, the tribological behaviors of DLC (Diamond-like carbon) films, prepared by the radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) method, were studied in elevated temperatures. The ball-on-disk tests with DLC films on steel specimens were conducted at a sliding speed of 60 rpm, a load of 10N, and surrounding various temperatures of $25^{\circ}C,\;40^{\circ}C,\;55^{\circ}C\;and\;75^{\circ}C$. The results show considerable dependency of DLC tribological parameters on temperature. The friction coefficient decreased as the surrounding temperature increased. After tests the wear tracks of hydrogenated DLC film were analyzed by optical microscope, scanning electron spectroscopy (SEM) and Raman spectroscopy. The surface roughness and 3-D images of wear track were also obtained by an atomic force microscope (AFM).

The Variation of Response on Humidity in CNT Thin Film by Silane Binders (실란 바인더에 의한 탄소나노튜브 박막의 감습 특성 변화)

  • Kim, Seong-Jeen
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.782-787
    • /
    • 2010
  • Recently the solution-based thin film technology has often been treated in the field of device fabrication owing to easy process and convenience for the development of various semiconductor devices and sensors. We deposited on glass substrate single-walled carbon nanotubes (SWNTs)/silane hybrid thin films by multiple spray-coating which is one of solution-based processes, and examined their electrical response for humidity. Generally silane binders which are often mixed in carbon nanotube (CNT) solution to adhere CNTs to substrate well form easily each own functionalized group on the surface of CNTs after they are hardened by way of the hydrolysis reaction. In this work, we investigated how silane binders (TEOS (tetraethoxy silane), MTMS (methyltrimethoxysilane) and VTMS (vinyltrimethoxysilane)) in CNT thin films make effect to their electrical response on humidity. As the result, we found that the resistance in the samples using TEOS was changed dramatically while it was almost invariant in the samples using MTMS and VTMS for increasing humidity.

The Fabrication of Gas Sensors using MWCNTs (다중벽 카본 나노 튜브를 이용한 가스센서의 제작)

  • Jang, Kyung-Uk;Kim, Myung-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1089-1094
    • /
    • 2009
  • Carbon nanotubes (CNTs) have excellent electrical, chemical stability, mechanical and thermal properties. In this paper, networks of Multi-walled carbon nanotube (MWCNT) materials were investigated as resistive gas sensors for ethanol ($C_2H_5OH$) detection. Sensor films were fabricated by air spray method for the multi-walled CNTs solution on glass substrates. Sensors were characterized by resistance measurements in the sensing system, in order to find the optimum detection properties for the ethanol gas molecular. The film that was sprayed with the MWCNT dispersion for 60 see, was 300 nm thick. And the electric resistivity is $2{\times}10^{-2}\;{\Omega\cdot}cm$. Also, the sensitivity and the linearity of MWVNT sensor for ethanol gas are 0.389 %/sec and 17.541 %/FS, respectively. The MWCNT film was excellent in the response for the ethanol gas molecules and its reaction speed was very fast, which could be using as ethanol gas sensor. The conductance of the fabricated sensors decreases when the sensors are exposed to ethanol gas.

Inkjet Printing of Single Wall Carbon Nanotubes for Transparent Conductive Films

  • Song, Jin-Won;Yoon, Yeo-Hwan;Kim, Joon-Dong;Lee, Eung-Sug;Choi, Byung-Sam;Kim, Jae-Ho;Han, Chang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1257-1260
    • /
    • 2007
  • A single-wall carbon nanotube (SWNT) transparent conductive film (TCF) was fabricated using a simple inkjet printing method. The TCF could be selectively patterned by controlling the dot size to diameters as small as $34\;{\mu}m$. In this repeatable and scalable process, we achieved 71% film transmittance and a resistance of 900 ohm/sq sheet with an excellent uniformity, about ${\pm}\;5%$ deviation overall. Inkjet printing of SWNT is substrate friendly and the TCF is printed on a flexible substrate. This method of fabrication using direct printing permits mass production of TCF in a large area process, reducing processing steps and yielding low-cost TCF fabrications on a designated area using simple printing.

  • PDF

MWCNTs/V2O5 Nanowire Hetero-junction Actuator Devices (탄소나노튜브/V2O5 나노선 헤테로 구동소자 특성연구)

  • Lee Kang-Ho;Yee Seong-Min;Park So-Jeong;Huh Jung-Hwan;Kim Gyu-Tae;Park Sung-Joon;Ha Jeong-Sook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.250-254
    • /
    • 2006
  • Hetero-junction sheet actuator composed of carbon nanotubes and $V_{2}O_5$ nanowires were demonstrated in a bimetal configuration. The successive filtration of $V_{2}O_5$ nanowire solution followed by carbon nanotube dispersed water solution in the same way produced a dark-gray colored sheet. A significant actuation was observed in sodium chloride electrolyte solution with a bending direction to the carbon nanotube side at the positive bias voltage against the copper counter-electrode. As the frequency of the applied voltage increased, the amplitudes decreased, indicating a rather slow response of the hetero-film actuator in the electrolyte solution. The hybrid structure enabled an easy fabrication of the film actuator with the enhanced efficiencies.

Fabrication of carbon nanotube gas sensor using a diaphragm structure (다이아프램 구조를 이용한 탄소나노튜브 가스 센서의 제작)

  • Kim, Sung-Woon;Han, Chun-Jae;Cho, Woo-Sung;Ju, Byeong-Kwon;Cho, Hyun-Seob;Kim, Young-Cho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.223-226
    • /
    • 2006
  • The micro-gas sensor based on carbon nanotubes (CNTs) was fabricated and its gas sensing characteristics on nitrogen dioxide ($NO_2$) have been investigated. The sensor consists of a heater, an insulating layer, a pair of contact electrodes, and CNT-sensing film on a micromachined diaphragm. The heater plays a role in the temperature change to modify sensor operation. Gas sensor responses of CNT-film to $NO_2$ at room temperature are reported. The sensor exhibits a reversible response with a time constant of a few minutes at thermal treatment temperature of $130^{\circ}C$.

  • PDF