• Title/Summary/Keyword: Carbon film

Search Result 1,327, Processing Time 0.033 seconds

Corrosion Protection Performance of PVDF/PMMA-Blended Coatings by Electrochemical Impedance Method

  • Kim, Yun Hwan;Kwon, Yong Sung;Shon, Min Young;Moon, Myung Jun
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • The effect of mixing ratio on the corrosion protection of carbon steel coated by a film composed of poly(vinylidene) fluoride (PVDF) and poly(methyl methacrylate) (PMMA) was examined using electrochemical impedance spectroscopy. Surface crystallization behavior and thermal properties of the PVDF/PMMA coated carbon steel were evaluated using polarized optical microscopy and differential scanning calorimetry, respectively. A Maltese cross-pattern spherulite crystal was observed in the PVDF/PMMA coating film, which became more apparent with increasing PVDF content. The highest corrosion protection performance was achieved with 60 wt.% PVDF-coated carbon steel, and delamination and corrosion reactions were observed for 20 wt.% PVDF-coated carbon steel. Further, corrosion protection performance with an amorphous/crystal mixture (PVDF/PMMA, 60/40 (w/w)) was better than those observed in the amorphous domain and the perfect-crystal domain of the PVDF/PMMA blended coating system.

Deposition of Diamond Like Carbon Thin Films by PECVD (PECVD법에 의한 DLC 박막의 증착)

  • 김상호;김동원
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.2
    • /
    • pp.122-128
    • /
    • 2002
  • This study was conducted to synthesize the diamond like carbon films by plasma enhanced chemical vapor deposition (PECVD). The effects of gas composition on growth and mechanical properties of the films were investigated. A little amount of hydrogen or oxygen were added to base gas mixture of methane and argon. Methane dissociation and diamond like carbon nucleation were enhanced by installing negatively bias grid near substrate. The deposited films were indentified as hard diamond like carbon films by micro-Raman spectroscopy. The surface and fractured cross section of the films which were observed by scanning electron microscopy showed that film growth is very slow as about 0.3$\mu\textrm{m}$/hour, and relatively uniform with hydrogen addition. Vickers hardness of tungsten carbide (WC) cutting tool increased from about 1000 to 1600~1800 by deposition of DLC film, that of commercial TiN coated tool was about 1270. In cutting test of aluminum 6061 alloy, DLC coated cutting tool showed 1/3 or lower crater and flank wear than TiN coated or non-coated WC cutting tools.

A study on the humidity sensing properties of crystalline carbon nitride films (결정성 질화탄소막의 습도 감지특성에 관한 연구)

  • Lee, Ji-Gong;Ha, Se-Guen;Kim, Jung-Hun;Lee, Sung-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.88-91
    • /
    • 2003
  • Crystalline carbon nitride films have been attempted for an application of humidity sensors. The films were deposited on $Al_2O_3$ substrate having interdigitated electrodes by reactive RF magnetron sputtering system. The film revealed a good humidity-resistance characteristics as well as humidity-capacitance ones in the humidity range of $10\;{\sim}\;95\;RH(%)$. Temperature dependence was also investigated. These results suggest that carbon nitride film have a possibility for a new humidity-sensitive materials.

  • PDF

Film Boiling Chemical Vapor Infiltration of C/C Composites: Influence of Mass and Thermal Transfers

  • Delhaes, P.;Trinquecoste, M.;Derre, A.;Rovillain, D.;David, P.
    • Carbon letters
    • /
    • v.4 no.4
    • /
    • pp.163-167
    • /
    • 2003
  • The "Film boiling" Chemical Vapor Infiltration (CVI) process is a rapid densification one developed in particular for the elaboration of carbon/carbon composite materials. In order to optimize this new thermal gradient process, we have carried out several studies, on one hand, about the nature of the complex chemical reactions in a confined medium, and on the other hand, relative to the role of heat and mass transfers inside the preform. We show in this study that the introduction of a permeable sheath around the preform leads to hybrid liquid/gas CVI process which presents the advantages of very high densification rates associated with a moderate input energy.

  • PDF

Frictional and Wear Characteristics of Non-Asbestos Materials at Elevated Temperature (고온에서 비석면 마찰재의 마찰$cdot$마모특성)

  • 안병길;최웅수;권오관
    • Tribology and Lubricants
    • /
    • v.7 no.2
    • /
    • pp.61-66
    • /
    • 1991
  • The frictional and wear characteristics of non-asbestos friction materials made of four different fibers (carbon, aramid, ceramic and glass) have been investigated at elevated temperature using High Frequency Friction Tester. On the basis of the experimental results, friction and wear phenomena of four different non-asbestos fibers were caused by lattice layer film of carbon, polymeric transfer film of aramid, abrasion of ceramic and adhesion of glass fiber under each contact junction. The surface analysis of the worn specimens and counter parts after tests were observed using Scanning Electron Microscope and Optical Microscope.

Synthesis of self-aligned carbon nanotubes on a Ni particles using Chemical Vapour Deposition

  • Park, Gyu-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.64-64
    • /
    • 2000
  • Since its discovery in 1991, the carbon nanotube has attracted much attention all over the world; and several method have been developed to synthesize carbon nanotubes. According to theoretical calculations, carbon nanotubes have many unique properties, such as high mechanical strength, capillary properties, and remarkable electronical conductivity, all of which suggest a wide range of potential applications in the future. Here we report the synthesis in the catalytic decomposition of acetylene at ~65 $0^{\circ}C$ over Ni deposited on SiO2, For the catalyst preparation, Ni was deposited to the thickness of 100-300A using effusion cell. Different approaches using porous materials and HF or NH3 treated samples have been tried for synthesis of carbon nanotubes. It is decisive step for synthesis of carbon nanotubes to form a round Ni particles. We show that the formation of round Ni particles by heat treatment without any pre-treatment such as chemical etching and observe the similar size of Ni particles and carbon nanotubes. Carbon nanotubes were synthesized by chemial vapour deposition ushin C2H2 gas for source material on Ni coated Si substrate. Ni film gaving 20~90nm thickness was changed into Ni particles with 30~90nm diameter. Heat treatment of Ni fim is a crucial role for the growth of carbon nanotube, High-resolution transmission electron microscopy images show that they are multi-walled nanotube. Raman spectrum shows its peak at 1349cm-1(D band) is much weaker than that at 1573cm-1(G band). We believe that carbon nanotubes contains much less defects. Long carbon nanotubes with length more than several $\mu$m and the carbon particles with round shape were obtained by CVD at ~$650^{\circ}C$ on the Ni droplets. SEM micrograph nanotubes was identified by SEM. Finally, we performed TEM anaylsis on the caron nanotubes to determine whether or not these film structures are truly caron nanotubes, as opposed to carbon fiber-like structures.

  • PDF

Mechanical Property Evaluation of Diamond-like Carbon Coated by PE-CVD (PE-CVD방법을 이용한 DLC 박막의 기계적특성 평가)

  • Kang Seog Ju;Yi Jin-Woo;Kim Seock Sam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.368-376
    • /
    • 2003
  • In this research, DLC thin films are produced as several hundred nm thickness by PE-CVD method. And then these thin films are estimated tribological characteristics to find out useful possibilities as a protecting film for high-quality function and life extension at MEMs by mechanical properties observation . These are measured thickness and residual stress of DLC coating. Compared after measuring friction coefficient, adhesion force, hardness, cohesive force of coating films. As results all test, we can decide several conclusions. First, friction coefficient decreased, as the load increased. otherwise, friction coefficient increased, as thickness of coating film increased under low load$(1\~50mN)$. Secod, adhesion force increased as thickness of coating films. Third, hardness of coating film is affected by substrate coating film when it is less than thickness of 300nm and it has general hardness of DLC coating film when it is more than thickness of 500nm. Fourth, cohesive force of coating film is complexly affected by hardness, adhesion force, residual stress, etc.

  • PDF