• 제목/요약/키워드: Carbon fiber reinforced plastic

Search Result 311, Processing Time 0.025 seconds

A Study on the CFRP Treatment by ion Assisted Reaction Method to Improve T-peel Strength of CFRP/Aluminum Composites (CFRP/알루미늄 복합재에서 이온도움반응법을 적용한 CFRP의 표면처리가 T-peel 강도에 미치는 영향에 대한 연구)

  • Lee, Gyeong-Yeop;Yang, Jun-Ho;Yun, Chang-Seon;Choe, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.570-575
    • /
    • 2002
  • It is well-known that the bond strength between CFRP(Carbon Fiber Reinforced Plastic) and aluminum is significantly affected by the surface treatment of the CFRP and the aluminum. This study investigates the surface treatment of CFRP to improve the T-peel strength of CFRP/aluminum composites. The surface of %CFRP([0^0]_{14})$ was treated by the ion assisted reaction method under oxygen environment. T-peel strength tests were performed based on the procedure of ASTM D1876-95. The T-peel strength of surface-treated CFRP/aluminum composites was compared with that of untreated CFRP/aluminum composites. The results showed that the T-peel strength of surface-treated CFRP/aluminum composites was about 5.5 times higher than that of untreated CFRP/aluminum composites. SEM examination showed that the improvement of T-peel strength was attributed to the uniform spread and fracture of epoxy adhesive.

Airframe Structure Development of Solar-powered HALE UAV EAV-3 (고고도 장기체공 태양광 무인기 EAV-3 기체구조 개발)

  • Shin, Jeong Woo;Park, Sang Wook;Lee, Sang Wook;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.35-43
    • /
    • 2017
  • Research for solar-powered high altitude long endurance(HALE) UAV was conducted by Korea Aerospace Research Institute(KARI), and the EAV-3 with 19.5m wing span was developed. For HALE flight, aircraft should be lightly designed. Especially, airframe structure that accounts for a large portion of the total weight of aircraft should be lightweight. In this paper, development process of airframe structure for solar-powered HALE UAV, EAV-3, is described briefly. Domestic developed T-800 grade CFRP(Carbon Fiber Reinforced Plastic) composite material with high modulus and strength was used to design main load carrying structures. Flightloads analysis that takes into account large structural deformation was carried out. Stress and flutter analyses for airframe structure sizing were conducted. Static strength test for main wing and aircraft ground vibration test were conducted successfully and structural integrity was secured.

A Study on Effects to Residual Fatigue Bending Strength or Orthotropy CFRP Composite Laminates under High Temperature and Moisture (고온.고습하에서 직교이방성 CFRP 복합적층판이 잔류피로 굽힘강도에 미치는 영향에 관한 연구)

  • 임광희;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.247-258
    • /
    • 2000
  • It is thought that impact damages and hygrothermals can affect to CFRP (Carbon-fiber reinforced plastic) composite laminated due to the sensitivity on the composite laminated Therefore, this paper focuses on the fracture mechanisms experimentally based on a scanning acoustic microscope (SAM) when subjected to impact damages, i.e., foreign object damages(FOD), and also the influence of impact damages and hygrothermals on residual fatigue bending strength of CFRP laminates. Composite laminates used in the experiment are CF/EPOXY orthotropy laminated plates, which constist of two-interfaces [04/904]s. A steel ball launched by an air gun collides against CFRP laminates to generate impact damages. Bending fatigue tests are periodically interrupted for a nondestructive evaluation (NDE) measurement of the progrossive damages to built the fracture mechanism by impact damages, and three-point fatigue bending tests are carried out to investigate the influence of hygrothermals on the effect on the residual bending fatigue strength of CFRP laminates.

  • PDF

A Study on Acoustic Emission Characteristics of CFRP in aircraft operations (운항 중 실구조물(항공기 축소모델)에서의 탄소섬유강화플라스틱(CFRP)의 음향방출신호 특성에 관한 연구)

  • Lee, Kyung-Won;An, Ju-Seon;Hwang, Woong-Gi;Lee, Jong-Oh;Lee, Sang-Yul;Lee, Bo-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.59-66
    • /
    • 2010
  • Aerospace structures need high stability and long life because many personal injuries can result from an accident and securing structural integrity for various external environments is more important than any other thing. So first of all we must prove the destruction properties for operating environment, have prediction technology about damage evolution and life, and develop an economical non-destructive technology capable of detecting structure damage. Acoustic emission (AE) have no need of artificial environment like ultrasonic inspection or radio fluoroscopy to emit a certain energy, is a testing technique using seismic signal resulting from interior changes of solids, and enables to observe if any fault is appeared and it grows seriously or not while running. In this study we suggest the method of structural integrity evaluation for aerospace structures through the acoustic emission technique, for which a model plane was manufactured and an actual operation test was conducted.

Improvement of Out-of-Plane Impact Damage Resistance of CFRP Due to Through-the-Thickness Stitching

  • Yoshimura, Akinori;Nakao, Tomoaki;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.121-134
    • /
    • 2009
  • The present study investigated, both experimentally and numerically, the improvement of low-velocity impact damage resistance of carbon fiber reinforced plastic (CFRP) laminates due to through-the-thickness stitching. First, we conducted drop-weight impact tests for stitched and unstitched laminates. The results of damage inspection confirmed that stitching did improve the impact damage resistance, and revealed that the improvement effect became greater as the impact energy increased. Moreover, the stitching affected the through-the-thickness damage distribution. Next, we performed FEM analysis and calculated the energy release rate of the delamination crack using the virtual crack closure technique (VCCT). The numerical results revealed that the stitching affected the through-the-thickness damage distribution because the stitch threads had a marked effect on decreasing both the modes I and II energy release rate around the bottom of the laminate. Comparison of the results for models that contained delaminations of various sizes revealed that the energy release rate became lower as delamination size increased; therefore the stitching improved the impact resistance more effectively when the impact energy was higher.

Study on drilling of CFRP/Ti6Al4V stack with modified twist drills using acoustic emission technique

  • Prabukarthi, A.;Senthilkumar, M.;Krishnaraj, V.
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.573-588
    • /
    • 2016
  • Carbon Fiber Reinforced Plastic (CFRP) and Titanium Alloy (Ti6Al4V) stack, extensively used in aerospace structural components are assembled by fasteners and the holes are made using drilling process. Drilling of stack in one shot is a complicated process due to dissimilarity in the material properties. It is vital to have optimal machining condition and tool geometry for better hole quality and tool life. In this study the tool wear and hole quality were analysed by experimental analysis using three modified twist drills and online tool condition monitoring using Acoustics Emission (AE) sensor. Helix angle and point angle influence tool performance and cutting force. It was found that a tool geometry (TG1) with high helix angle of $35^{\circ}$ with low point angle $130^{\circ}$ results in reduction in thrust force of 150-500 N range but the TG2 also perform almost similar to TG1, but when compared with the AErms voltage generated during drilling it was found that progressive rise in voltage in TG1 is less with respect to TG2 which can be attributed to tool life. In process wear monitoring was done using crest factor as monitoring index. AErms voltage were measured and correlated with the performance of the drills.

High-speed angular-scan pulse-echo ultrasonic propagation imager for in situ non-destructive evaluation

  • Abbas, Syed H.;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.223-230
    • /
    • 2018
  • This study examines a non-contact laser scanning-based ultrasound system, called an angular scan pulse-echo ultrasonic propagation imager (A-PE-UPI), that uses coincided laser beams for ultrasonic sensing and generation. A laser Doppler vibrometer is used for sensing, while a diode pumped solid state (DPSS) Q-switched laser is used for generation of thermoelastic waves. A high-speed raster scanning of up to 10-kHz is achieved using a galvano-motorized mirror scanner that allows for coincided sensing and for the generation beam to perform two-dimensional scanning without causing any harm to the surface under inspection. This process allows for the visualization of longitudinal wave propagation through-the-thickness. A pulse-echo ultrasonic wave propagation imaging algorithm (PE-UWPI) is used for on-the-fly damage visualization of the structure. The presented system is very effective for high-speed, localized, non-contact, and non-destructive inspection of aerospace structures. The system is tested on an aluminum honeycomb sandwich with disbonds and a carbon fiber-reinforced plastic (CFRP) honeycomb sandwich with a layer overlap. Inspection is performed at a 10-kHz scanning speed that takes 16 seconds to scan a $100{\times}100mm^2$ area with a scan interval of 0.25 mm. Finally, a comparison is presented between angular-scanning and a linear-scanning-based pulse-echo UPI system. The results show that the proposed system can successfully visualize defects in the inspected specimens.

Design of Flexible Composite Propellers considering Fluid-structure Interaction (유체-구조 연성 효과를 고려한 복합소재 유연 프로펠러의 설계)

  • Kim, Ji-Hye;Ahn, Byoung-Kwon;Kim, Gun-Do
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.61-69
    • /
    • 2020
  • Due to its flexibility of the composite propeller blade, it is necessary to design a shape capable of generating a desired load at a design point in consideration of the shape change of the propeller. In order to design it, we need to evaluate not only the hydrodynamic force around it, but also its structural response of flexible propeller according to its deformation. So, it is necessary to develop a design tool to predict the hydroelastic performance of a flexible propeller with deformation considering fluid-structure interaction and special operating conditions. Finally a design optimization tool for flexible propellermade of CFRP is required. In this study, a design methodology of the specific flexible composite propeller is suggested, considering fluid-structural interaction analysis of the specific flexible propeller.

Strength Analysis of Joint Between Steel Plate and CFRP Laminated Splice Plates Patched by Adhesive (접착제를 사용한 CFRP와 강재 이음부의 강도 해석)

  • Park, Dae-Yong;Lee, Sang-Youl;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.13-19
    • /
    • 2011
  • This paper presents the stress distribution of the damaged butt joint of steel plate using CFRP laminates when the flange in tension zone of steel box girder is welded by butt welding. When CFRP sheets are patched on tension flange of steel-box girder, the stress distribution of a vertical and normal direction on damaged welding part is shown as parameters such as a variation of the thickness of adhesive, the overlap length with steel, and the modulus of elasticity of CFRP sheets. For the study, we wrote the computer program using the EAS(Enhanced assumed strain) finite element method for plane strain that has a very fast convergency and exact stress for distorted shape.

Analysis of the Numerical Simulation Accuracy in the CFRP-Al Alloy SPR Joint Process According to the CFRP Modeling Method (CFRP 모델링 기법에 따른 CFRP-Al합금 SPR 접합공정의 수치해석 정확도 분석)

  • Kim, S.H.;Park, N.;Song, J.H.;Noh, W.;Park, K.Y.;Bae, G.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.265-271
    • /
    • 2020
  • The purpose of this paper is to analyze the numerical simulation accuracy according to the CFRP modeling method in the CFRP-Al alloy SPR (Self-Piercing Rivet) joint process. The mechanical properties of the CFRP, aluminum sheet are precisely obtained from the tensile test according to the loading direction. Additionally, the hardening curve of rivet was calculated from the inverse analysis of the machined rivet-ring compression test. For the CFRP-Al alloy SPR simulation, two kinds of the CFRP modeling methods were established based on the continuum and layer-by-layer approaches. The simulation results showed that the CFRP layer-by-layer modeling method can provide more reliable prediction shape of the fractured sheets and deformed rivet. This simulation technique can be used in evaluating the CFRP-Metal SPR performance and designing the SPR process conditions.