• Title/Summary/Keyword: Carbon felt

Search Result 56, Processing Time 0.025 seconds

Reduction of Volatile Organic Compounds Emitted from Automobile Felt by Activated Carbon and Hollow Core/Mesoporous Shell Carbon Ball (자동차용 팰트로부터 방출되는 휘발성 유기화합물의 저감 연구)

  • Park, Seung-Kyu;Kim, Heon-Chang
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.680-683
    • /
    • 2010
  • Nano carbon balls (NCBs), activated carbons (ACs) and their mixture (new carbon mixtures, NCMs) were used to reduce volatile organic compounds (VOCs) emitted from the automobile felt. The optimum analytical method to measure the trace amount of the VOCs, including formaldehyde and acetaldehyde, has been established by utilizing high performance liquid chromatography (HPLC) and gas chromatography (GC). The levels of formaldehyde and acetaldehyde released from newly produced felt were in the ranges of 0.3~6.0 ppm and 0.2~3.0 ppm, respectively. After 14 days of aging at the room temperature, however, their levels were still in the ranges of 0.2~0.5 ppm and 0.2~0.4 ppm, respectively. By applying NCMs of 2 wt% to the automobile felt, the amount of the total volatile organic compounds (TVOCs) was reduced under the chronic inhalation minimum risk level of $0.32mmmm{\mu}g/TP$.

Performances of Metallic (sole, composite) and Non-Metallic Anodes to Harness Power in Sediment Microbial Fuel Cells

  • Haque, Niamul;Cho, Daechul;Kwon, Sunghyun
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.363-367
    • /
    • 2014
  • One chambered sediment microbial fuel cell (SMFC) was equipped with Fe, brass (Cu/Zn), Fe/Zn, Cu, Cu/carbon cloth and graphite felt anode. Graphite felt was used as common cathode. The SMFC was membrane-less and mediator-less as well. Order of anodic performance on the basis of power density was Fe/Zn ($6.90Wm^{-2}$) > Fe ($6.03Wm^{-2}$) > Cu/carbon cloth ($2.13Wm^{-2}$) > Cu ($1.13Wm^{-2}$) > brass ($Cu/Zn=0.24Wm^{-2}$) > graphite felt ($0.10Wm^{-2}$). Fe/Zn composite anode have twisted 6.73% more power than Fe alone, Cu/carbon cloth boosted power production by 65%, and brass (Cu/Zn) produced 65% less power than Cu alone. Graphite felt have shown the lowest electricity generation because of its poor galvanic potential. The estuarine sediment served as supplier of oxidants or electron producing microbial flora, which evoked electrons via a complicated direct microbial electron transfer mechanism or making biofilm, respectively. Oxidation reduction was kept to be stationary over time except at the very initial period (mostly for sediment positioning) at anodes. Based on these findings, cost effective and efficient anodic material can be suggested for better SMFC configurations and stimulate towards practical value and application.

Development of Boron Doped Carbon Using CO2 Reduction with NaBH4 for Vanadium Redox Flow Battery (수소화 붕소 나트륨 (NaBH4) 과 이산화탄소의 환원을 이용한 바나듐 레독스 흐름전지용 탄소 촉매 개발)

  • Han, Manho;Kim, Hansung
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In this study, boron - doped carbon was prepared by reducing carbon dioxide ($CO_2$) at high temperature by using sodium borohydride ($NaBH_4$). The boron - doped carbon was coated on carbon felt and applied as an electrode for a vanadium redox battery cell. As a result of electrochemical performance evaluation, reversibility of carbon felt coated with boron doped carbon compared to pure carbon felt was improved by about 20% and charge transfer resistance was reduced by 60%. In the charge / discharge results, energy density and energy efficiency were improved by 21% and 12.4%, respectively. These results show that carbon produced by reduction of $CO_2$ can be used as electrode material for redox flow battery.

Development of Carbon Felt Electrode Using Urea for Vanadium Redox Flow Batteries (Urea를 이용한 바나듐 레독스 흐름 전지용 카본 펠트 전극 개발)

  • Kim, So Yeon;Kim, Hansung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.408-412
    • /
    • 2019
  • In this study, nitrogen doped carbon felt was prepared by pyrolysis of urea at high temperature and applied as an electrode for vanadium redox flow cell. Urea is easier to handle than ammonia and forms $NH_2$ radicals at higher temperatures, creating a nitrogen functional group on the carbon surface and acting as an active site in the vanadium redox reaction. Therefore, the discharge capacity of activated carbon felt electrodes using urea was 14.9 Ah/L at a current density of $150mA/cm^2$, which is 23% and 187% higher than OGF and GF, respectively. These results show the possibility that activated carbon felt electrode using urea can be used as electrode material for redox flow battery.

Effect of the redox flow battery and electrode characteristics according to the heat treatment temperature of a carbon felt (탄소펠트의 열처리 온도에 따른 레독스흐름전지와 전극 특성에 미치는 영향)

  • Yoo, Hyosung;You, Hyunjin;Yu, Kihyun;Kang, Junyoung;Park, Hongsik;Choi, Woonghwi;Yoo, Dong Jin
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.89-95
    • /
    • 2015
  • Carbon felts manufactured by (Co)CNF were subjected to heat treatment under different temperatures to use for the electrode of a redox-flow battery. BET and weight loss were tested to investigate the physical properties of the carbon felt according to the heat treatment conditions. SEM and XPS were also analyzed to characterize their surface area. In addition, electrical resistance, CV (cyclic voltammetry) and RFB charge on the electrode properties were examined in accordance with the heat treatment conditions with the discharge performance. The changes of physical properties on the carbon felt surface was confirmed via SEM and BET analysis, The most addition of oxygen functional groups on the carbon felt surface was obtained when one hour heat treatment at $550^{\circ}C$ and it was confirmed by XPS analysis. After resulting the CV tests, the active area of the electrode was the largest at $550^{\circ}C$ heat treatment. The heat treatment experiment of vanadium redox flow battery using the carbon felts were tested at $400^{\circ}C$, $500^{\circ}C$ and $550^{\circ}C$. As a result, the charge-discharge energy efficiency of the heat treatment electrode was 72.9% and 79.8%, at $400^{\circ}C$ and $500^{\circ}C$, respectively. The efficiency of the heat treatment electrode at $550^{\circ}C$ was the best as 79.8% at $550^{\circ}C$.

The Effect of Pre-carbonization Condition on the Mechanical Properties of Nonwoven Carbon/Phenolic Composites (전 열처리 조건이 탄소/페놀 부직포 복합재료의 역학적 성질에 미치는 영향)

  • 정경호;박종규;이성호;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.133-136
    • /
    • 2001
  • The effect of pre-carbonization condition on the mechanical properties of nonwoven needle-punched carbon/phenolic composite was studied. The nonwoven Oxi-PAN felt was pre-carbonized at different temperature. The pre-carbonized Oxi-PAN felt was needle-punched and then carbonized. Needle-punched nonwoven carbon preforms were formed into composites with phenol resin. The tensile and flexural strengths showed maximum value with pre-carbonization temperature of $500^{\circ}C$. Compared with the non-pre-carbonized composite, the mechanical properties were slightly improved.

  • PDF

Effect of surface modification of carbon felts on capacitive deionization for desalination

  • Lee, Jong-Ho;Ahn, Hong-Joo;Cho, Donghwan;Youn, Jeong-Il;Kim, Young-Jig;Oh, Han-Jun
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.93-100
    • /
    • 2015
  • Surface modified carbon felts were utilized as an electrode for the removal of inorganic ions from seawater. The surfaces of the carbon felts were chemically modified by alkaline and acidic solutions, respectively. The potassium hydroxide (KOH) modified carbon felt exhibited high Brunauer-Emmett-Teller (BET) surface areas and large pore volume, and oxygen-containing functional groups were increased during KOH chemical modification. However, the BET surface area significantly decreased by nitric acid ($HNO_3$) chemical modification due to severe chemical dissolution of the pore structure. The capability of electrosorption by an electrical double-layer and the efficiency of capacitive deionization (CDI) thus showed the greatest enhancement by chemical KOH modification due to the appropriate increase of carboxyl and hydroxyl functional groups and the enlargement of the specific surface area.

Improvement of Cathode Reaction of Vanadium Redox Flow Battery by Reforming Graphite Felt Electrode Using Cobalt Oxide (바나듐 레독스 흐름전지 양극 반응 향상을 위한 코발트 산화물 전극 개질법 연구)

  • Park, Jeongmok;Ko, Minseong
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.180-185
    • /
    • 2019
  • The demands to improve the performance of the vanadium redox flow battery have attracted an intense research on modifying the carbon-based electrode. In this study, the surface of graphite felt was reformed, using cobalt oxide. The cobalt oxide was implanted into graphite felt during hydrothermal and two step heat treatments. The cobalt was deposited by hydrothermal method and the two step heat treatments made lots of holes on the graphite felt surface which is called as porous surface. The porous surface acts as an electrochemically active site for the cathodic reaction of vanadium redox flow battery. The reformed electrode shows the electrochemically improved performance compared with the pristine electrode.

Fabrication and Electrochemical Characterization of N/S co-doped Carbon Felts for Electric Double-Layer Capacitors (전기이중층 커패시터용 질소/황이 동시에 도핑된 탄소 펠트의 제조 및 전기화학적 성능 평가)

  • Lee, Byoung-Min;Yun, Je Moon;Choi, Jae-Hak
    • Korean Journal of Materials Research
    • /
    • v.32 no.5
    • /
    • pp.270-279
    • /
    • 2022
  • In this study, N/S co-doped carbon felt (N/S-CF) was prepared and characterized as an electrode material for electric double-layer capacitors (EDLCs). A commercial carbon felt (CF) was immersed in an aqueous solution of thiourea and then thermally treated at 800 ℃ under an inert atmosphere. The prepared N/S-CF showed a large specific surface area with hierarchical pore structures. The electrochemical performance of the N/S-CF-based electrode was evaluated using both 3-electrode and 2-electrode systems. In the 3-electrode system, the N/S-CF-based electrode showed a good specific capacitance of 177 F/g at 1 A/g and a good rate capability of 41% at 20 A/g. In the 2-electrode system (symmetric capacitor), the freestanding N/S-CF-based electrode showed a specific capacitance of 275 mF/cm2 at 2 mA/cm2, a rate capability of 62.5 % at 100 mA/cm2, a specific power density of ~ 25,000 mW/cm2 at an energy density of 23.9 mWh/cm2, and a cycling stability of ~ 100 % at 100 mA/cm2 after 20,000 cycles. These results indicate the N/S co-doped carbon felts can be a promising candidate as a new electrode material in a symmetric capacitor.

Dye Decomposition in Seawater using Electro-Fenton Reaction (전기-펜톤 반응을 이용한 해수 중의 염료 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.29 no.4
    • /
    • pp.383-393
    • /
    • 2020
  • To increase electrolysis performance, the applicability of seawater to the iron-fed electro-Fenton process was considered. Three kinds of graphite electrodes (activated carbon fiber-ACF, carbon felt, graphite) and dimensionally stable anode (DSA) electrode were used to select a cathode having excellent hydrogen peroxide generation and organic decomposition ability. The concentration of hydrogen peroxide produced by ACF was 11.2 mg/L and those of DSA, graphite, and carbon felt cathodes were 12.9 ~ 13.9 mg/L. In consideration of durability, the DSA electrode was selected as the cathode. The optimum current density was found to be 0.11 A/㎠, the optimal Fe2+ dose was 10 mg/L, and the optimal ratio of Fe2+ dose and hydrogen peroxide was determined to be 1:1. The optimum air supply for hydrogen peroxide production and Rhodamine B (RhB) degradation was determined to be 1 L/min. The electro-Fenton process of adding iron salt to the electrolysis reaction may be shown to be more advantageous for RhB degradation than when using iron electrode to produce hydrogen peroxide and iron ion, or electro-Fenton reaction with DSA electrode after generating iron ions using an iron electrode.