Browse > Article

Reduction of Volatile Organic Compounds Emitted from Automobile Felt by Activated Carbon and Hollow Core/Mesoporous Shell Carbon Ball  

Park, Seung-Kyu (Department of Chemical Engineering, Hoseo University)
Kim, Heon-Chang (Department of Chemical Engineering, Hoseo University)
Publication Information
Applied Chemistry for Engineering / v.21, no.6, 2010 , pp. 680-683 More about this Journal
Abstract
Nano carbon balls (NCBs), activated carbons (ACs) and their mixture (new carbon mixtures, NCMs) were used to reduce volatile organic compounds (VOCs) emitted from the automobile felt. The optimum analytical method to measure the trace amount of the VOCs, including formaldehyde and acetaldehyde, has been established by utilizing high performance liquid chromatography (HPLC) and gas chromatography (GC). The levels of formaldehyde and acetaldehyde released from newly produced felt were in the ranges of 0.3~6.0 ppm and 0.2~3.0 ppm, respectively. After 14 days of aging at the room temperature, however, their levels were still in the ranges of 0.2~0.5 ppm and 0.2~0.4 ppm, respectively. By applying NCMs of 2 wt% to the automobile felt, the amount of the total volatile organic compounds (TVOCs) was reduced under the chronic inhalation minimum risk level of $0.32mmmm{\mu}g/TP$.
Keywords
nano carbon balls; activated carbons; automobile felt; VOCs; adsorbent;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 J. E. Amoore and E. Hautala, J. Appl. Toxicol., 3, 272 (1983).   DOI
2 X. S. Zhao, Q. Ma, and G. Q. Lu, Energy Fuels, 12, 1051 (1998).   DOI   ScienceOn
3 K. Kosuge, S. kubo, N. Kikukawa, and M. Takemori, Langmuir, 23, 3095 (2007).   DOI   ScienceOn
4 S. B. Yoon, K. N. Sohn, J. Y. Kim, C. H. Shin, J. S. Yu, and T. H. Hyeon, Adv. Mater., 14, 19 (2002).   DOI   ScienceOn
5 Y. Kim, S. B. Yoon, and J. S. Yu, Chem. Commun., 21, 790 (2003).
6 J. K. Lee, S. Y. Han, S. K. Park, Y. K. Park, and C. W. Lee, Korean J. Chem. Eng., 22, 42 (2005).   DOI   ScienceOn
7 J. Yang, T. T. Zhuang, F. Wei, Y. Zhou, Y. Cao, Z. Y. Wu, Z. J. H. Zhu, and C. Liu, J. Hazard. Mater., 162, 866 (2009).   DOI   ScienceOn
8 S. B. Yoon, J. Y. Kim, J. H. Kim, Y. J. Park, K. R. Yoon, S. K. Park, and J. S. Yu, J. Mater. Chem., 17, 1758 (2007).   DOI   ScienceOn
9 S. Carlos-Cuellar, P. Li, A. P. Christensen, B. J. Krueger, C. Burrichter, and V. H. Grassian, J. Phys. Chem. A, 107, 2350 (2003).
10 M. P. Cal, M. J. Rood, and S. M. Larson, Energy Fuels, 11, 311 (1997).   DOI   ScienceOn
11 L. Jing, L. Zhong, L. Bing, X. Qibin, and X. Hongxia, Chin. J. Chem. Eng., 16, 871 (2008).   DOI   ScienceOn
12 A. Stein, Z. Wang, and M. A. Fierke, Adv. Mater., 20, 1 (2008).   DOI   ScienceOn
13 T. Hayashi, M. Kumita, and Y. Otani, Environ. Sci. Technol., 39, 5436 (2005).   DOI   ScienceOn
14 M. Sugiura and K. Fukumoto, J. Mater. Sci., 29, 682 (1994).
15 T. Schupp, H. M. Bolt, and J. G. Hengstler, Toxicology, 206, 461 (2005).   DOI   ScienceOn
16 N. Ozturk and T. M. Bektas, J. Hazard. Mater. B, 12, 1555 (2004).
17 S. O. Lee, S. J. Kitchin, K. D. M. Harris, G. Sankar, M. Dugal, and J. M. Thomas, J. Phys. Chem. B, 106, 1322 (2002).   DOI   ScienceOn
18 M. E. Davis, A. P. Blicharz, J. E. Hart, F. Laden, E. Garshick, and T. J. Smith, Environ. Sci. Technol., 41, 7152 (2007).   DOI   ScienceOn
19 M. Krzyzanowski, J. J. Quackenboss, and M. D. Lebowitz, Environ. Res., 52, 117 (1990).   DOI   ScienceOn
20 B. N. Tam and C. M. Neumann, J. Environ. Manage., 73, 131 (2004).   DOI   ScienceOn
21 JAMA Press Releases (http://www.jama-english.jp), March 31 (2006).
22 T. Hayashi, M. Kumita, and Y. Otani, J. Chem. Eng., Jpn., 32, 72 (2006).
23 K. L. Foster, R. G. Fuerman, J. Economy, S. M. Larson, and M. J. Rood, Chem. Mater., 4, 1068 (1992).   DOI
24 R. S. Guerrero and A. Sayari, Environ. Sci. Technol., 41, 4761 (2007).   DOI   ScienceOn