• Title/Summary/Keyword: Carbon emission right

Search Result 12, Processing Time 0.023 seconds

Estimation of Carbon Footprint in Cherry-tomato Production System and Carbon Labelling in Agriculture Product (시설방울토마토의 생산과정에 있어 탄소배출량 산정과 농산물의 탄소라벨링)

  • Kim, Young-Ran;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.3
    • /
    • pp.291-308
    • /
    • 2011
  • This study was carried out to estimate carbon footprint and to establish of LCA of cherry-tomato production system. I have case study in cultivate cherry tomato (1 kg) calculate in carbon foot print. LCA carried out to estimate carbon foot print and to establish of LCI (life cycle inventory) database of cherry tomato production system. The data is from Research of Farmer's income in 2007 (RDA, 2008), and used Pass (4.1.3) program. The value of fertilizer, amount of pesticide input were show the environmental effect and direct emission. Carbon foot printing in agriculture guarantee the choice right th consumer th choose the row carbon goods. Its can make to strengthen of agriculture and food industry's reduction effort of $CO_2$. Nowadays consumer request food's safety and environment friendly process. Carbon foot printing needs consumer's relief and incentives.

Study of Garlic's Carbon Footprint though LCA (전과정평가를 통한 마늘의 탄소배출량 산정연구)

  • Yoon, Sung-Yee;Kim, Young-Ran;Kim, Tae-Ho;Park, Jin-Hyun;Ahn, Sung-Woo
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.2
    • /
    • pp.161-172
    • /
    • 2012
  • This study was carried out to estimate carbon footprint and to establish of LCA of garlic production system. We have case study in cultivate garlic 1 kg calculate in carbon footprint. LCA carried out to estimate carbon footprint and to establish of LCI (life cycle inventory) database of garlic production system. The data is from Research of Farmer's income in 2010 (RDA, 2011), and used Pass (5.0.0) program. The value of fertilizer, amount of pesticide input were shown the environmental effect and direct emission. Carbon footprint in agriculture guarantees the choice right the consumer to choose the lower carbon goods. Its can make to strengthen of agriculture and food industry's reduction effort of $CO_2$. Nowadays consumer requests food's safety and environment friendly process. Carbon footprint also needs consumer's relief and incentives.

Suggestion of Allocation Methodology of Environmental Pollution Cost on Multi - Product (복합생산품에 대한 환경오염비용 배분 방법론)

  • Kim, Deok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.5
    • /
    • pp.311-318
    • /
    • 2009
  • In previous study, a new allocation methodology of common cost on multi-product have been suggested. The aim of this study is to suggest the methodology that allocates an environment pollution cost including carbon emission cost to each cost of multi-product. For this study, a supposed multi-energy system composed of twenty kinds of systems was made. The multi-energy system produces eighteen kinds of outputs that are electricity, steam, hot water, chilled water, ice, warm air, and cooling air from seven kinds of energy source that are LNG, coil, geothermal energy, sun heat, hydrogen, bio-mass, and waste. The new methodology was applied to the multi-energy system in order to allocate the environment pollution cost to each production cost, and twenty seven equations were induced. From this result, it is concluded that this methodology can estimate each unit cost and allocate each cost flow in any product of any energy system.

The Application of CO2 and Hydrometer Sensor for Development of Real Time Measuring Method on CO2 Emission of Construction Equipment (건설장비의 CO2배출량 실시간 측정방법 개발을 위한 CO2 및 유속센서의 활용)

  • Jang, Won-Suk;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.2
    • /
    • pp.78-86
    • /
    • 2013
  • The researches for reduce $CO_2$ are going along animatedly in hole industry area. In construction area, the researches to minimize $CO_2$ emission are progressing variously. The researches to minimize $CO_2$ emission based on $CO_2$ emission. The method measuring $CO_2$ emission are using $CO_2$ emission coefficient on fuel consumption, LCA and an inter-industry relation table. Especially, the methods using the carbon emission coefficient based on fuel consumption are 3 types(Tier1~Tier3) of IPCC. Present, the most using method(Tier1) is using the fuel consumption and the carbon emission coefficient. But because this method do not effect each vehicle distance and driving environment, we can't calculate right $CO_2$ emission. Especially construction project's $CO_2$ emission could be different by project's characteristic. However, we can't apply these difference with present methods. So we need methodology calculating $CO_2$ emission by applying personal project's characteristic and these methodology's most important things is directly measuring $CO_2$ emission of construction equipment which use energy. The object of this study is to develop the $CO_2$ emission calculation methodology which occur in construction process, is to suggest ways to measure in real time $CO_2$ emission from construction equipment.

Self-Sensing of Single Carbon Fiber/Carbon Nanotube-Epoxy Composites Using Electro-Micromechanical Techniques and Acoustic Emission (전기적-미세역학시험법과 음향방출을 이용한 단일 탄소섬유/탄소나노튜브-에폭시 나노복합재료의 자체-감지능)

  • Park, Joung-Man;Jang, Jung-Hoon;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Jong-Kyu;Lee, Woo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.411-422
    • /
    • 2010
  • Self-sensing on micro-failure, dispersion degree and relating properties, of carbon nanotube(CNT)/epoxy composites, were investigated using wettability, electro-micromechanical technique with acoustic emission(AE). Specimens were prepared from neat epoxy as well as composites with untreated and acid-treated CNT. Degree of dispersion was evaluated comparatively by measuring volumetric electrical resistivity and its standard deviation. Apparent modulus containing the stress transfer was higher for acid-treated CNT composite than for the untreated case. Applied cyclic loading responded well for a single carbon fiber/CNT-epoxy composite by the change in contact resistivity. The interfacial shear strength between a single carbon fiber and CNT-epoxy, determined in a fiber pullout test, was lower than that between a single carbon fiber and neat epoxy. Regarding on micro-damage sensing using electrical resistivity measurement with AE, the stepwise increment in electrical resistivity was observed for a single carbon fiber/CNT -epoxy composite. On the other hand, electrical resistivity increased infinitely right after the first carbon fiber breaks for a single carbon fiber/neat epoxy composite. The occurrence of AE events of added CNT composites was much higher than the neat epoxy case, due to micro failure at the interfaces by added CNTs.

A Study on the Impact Analysis of Introducing Emission Trading System on CBP Market and Policy Implications (배출권거래제도 실시가 CBP 시장에 미치는 영향분석 및 대응방안 수립연구)

  • Kim, Myung-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.667-679
    • /
    • 2015
  • The bearer of the power sector's ETS compliance cost is power consumer for the following reasons. Firstly, power companies are constrained in establishing appropriate strategies to comply with ETS regulations due to the structural differences between the domestic power market and emission trading system. In other words, because power companies do not have a right to determine price and production of electricity, they have to compete with other companies under disadvantaged conditions in the emission trading market. Secondly, because ETS compliance cost is part of power production costs as it is also clearly written in the national greenhouse gas reduction road-map and the second energy supply plan, the cost should be included in power price following the power market operation rule. Thirdly, the most effective method to reduce carbon emissions in power sector is to reduce power demand, which is efficiently achieved through raising power price to a realistic level. Low power price in Korea is the major cause of rising power demand which is also the major cause of rising GHG emission. Therefore, power sector's ETS compliance cost should be included in power price to encourage power consumers' actions on reducing power consumption. Fourthly, when externality cost occurs in the process of delivering public services, usually beneficiary pay principle is applied to identify the cost bearer. Since electricity is one representative public good, the bearer of power sector's ETS compliance cost is power consumer.

Learning-by-doing Effect on Price Determination System in Korea's Emission Trading Scheme (한국 탄소배출권시장 가격결정체계의 학습효과 연구)

  • Son, Donghee;Jeon, Yongil
    • Environmental and Resource Economics Review
    • /
    • v.27 no.4
    • /
    • pp.667-694
    • /
    • 2018
  • We analyze the learning-by-doing effects of the allowance pricing system on the Korea's emission trading scheme. The price of allowance (Korean Allowance Unit) is influenced differently by internal market factors and economic conditions variables in the first (January 2015 to June 2016 ) and the second commitment year(January 2016 to June 2017). The prices and transaction volumes of complementary credits (KCU and KOC) as well as economic conditions variables (such as call rate, exchange rate, stock price) are statistically significant only for the second commitment year. Thus, the learning-by-doing effect makes the market participation decision on K-ETS market more efficient in the second commitment year, adopting the previous experience and knowledge in the K-ETS market. The factors estimated significantly in both commitment periods include the institutional binary variable for requiring the submission of the emissions verification reports issued both on February and March.

Analysis on the Trend of the Utilization of Woody Biomass - Production, supply, and practical use of woody biomass - (목질 바이오매스의 활용에 대한 동향 분석 - 목질 바이오매스의 생산·공급, 그리고 활용을 중심으로 -)

  • Ahn, Byeong-Il;Kim, Chul-Hwan;Lee, Ji-Young;Shim, Sung-Woong;Jo, Hu-Seung;Lee, Gyeong-Sun;Lee, Jee-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.32-42
    • /
    • 2012
  • Wood biomass including forest residues, waste wood, and construction residuals has been widely generated in Korea, but forest biomass from the National Forest Management Operation Project plays a big role in generating wood biomass. Unfortunately the promotion policy of woody energy organized by the Forest Service in Korea concentrates more on demand creation rather than on supply expansion. Therefore, in order to utilize insufficient wood resources effectively, it is greatly required to develop uses for maximizing their added value. In particular, more attention to the use of the second generation biomass has been paid in foreign countries because there is a threshold that the first generation biomass cannot produce enough biofuel without threatening food supplies and biodiversity. In Korea, wood pellets are regarded as the alternative clean fuels to oils and coals that emit green house gases into the atmosphere. However, using wood as pellet raw materials can not be an economic way because the value of wood disappears right after burning in the boiler in spite of its contribution to the decrease of carbon emission. Differently from wood pellets, kraft pulping process using woody biomass produces black liquor as a by-product which can be used to generate electricity, bioenergy and biochemicals through gasification. Thus, it can be more economical to make a torrefaction of lignocellulosic biomass such as low-quality wood and agricultural leftovers as raw materials of pellets.

Legal Review on the Regulatory Measures of the European Union on Aircraft Emission (구주연합의 항공기 배출 규제 조치의 국제법적 고찰)

  • Park, Won-Hwa
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.25 no.1
    • /
    • pp.3-26
    • /
    • 2010
  • The European Union(EU) has recently introduced its Directive 2008/101/EC to include aviation in the EU ETS(emissions trading system). As an amendment to Directive 2003/87/EC that regulates reduction of the green house gas(GHG) emissions in Europe in preparation for the Kyoto Protocol, 1997, it obliges both EU and non-EU airline operators to reduce the emission of the carbon dioxide(CO2) significantly in the year 2012 and thereafter from the level they made in 2004 to 2006. Emission allowances allowed free of charge for each airline operator is 97% in the first year 2012 and 95% from 2013 and thereafter from the average annual emissions during historical years 2004 to 2006. Taking into account the rapid growth of air traffic, i.e. 5% in recent years, airlines operating to EU have to reduce their emissions by about 30% in order to meet the requirements of the EU Directive, if not buy the emissions right in the emissions trading market. However, buying quantity is limited to 15% in the year 2012 subject to possible increase from the year 2013. Apart from the hard burden of the airline operators, in particular of those from non-European countries, which is not concern of this paper, the EU Directive has certain legal problems. First, while the Kyoto Protocol of universal application is binding on the Annex I countries of the Climate Change Convention, i.e. developed countries including all Member States of the European Union to reduce GHG at least by 5% in the implementation period from 2008 to 2012 over the 1990 level, non-Annex I countries which are not bound by the Kyoto Protocol see their airlines subjected to aircraft emissions reductions scheme of EU when operating to EU. This is against the provisions of the Kyoto Protocol dealing with the emissions of GHG including CO2, target of the EU Directive. While the Kyoto Protocol mandates ICAO to set up a worldwide scheme for aircraft emissions to contribute to stabilizing GHG concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system, the EU ETS was drawn up outside the framework of the international Civil Aviation Organization(ICAO). Second, EU Directive 2008/101 defines 'aviation activities' as covering 'flights which depart from or arrive in the territory of a Member State to which the [EU] Treaty applies'. While the EU airlines are certainly subject to the EU regulations, obliging non-EU airlines to reduce their emissions even if the emissions are produced during the flight over the high seas and the airspace of the third countries is problematic. The point is whether the EU Directive can be legally applied to extra-territorial behavior of non-EU entities. Third, the EU Directive prescribes 2012 as the first year for implementation. However, the year 2012 is the last year of implementation of the Kyoto Protocol for Annex I countries including members of EU to reduce GHG including the emissions of CO2 coming out from domestic airlines operation. Consequently, EU airlines were already on the reduction scheme of CO2 emissions as long as their domestic operations are concerned from 2008 until the year 2012. But with the implementation of Directive 2008/101 from 2012 for all the airlines, regardless of the status of the country Annex I or not where they are registered, the EU airlines are no longer at the disadvantage compared with the airlines of non-Annex I countries. This unexpected premium for the EU airlines may result in a derogation of the Kyoto Protocol at least for the year 2012. Lastly, as a conclusion, the author shed light briefly on how the Korean aviation authorities are dealing with the EU restrictive measures.

  • PDF

Sustainable (Green) Finance : Efficient and Effective Investment Strategies for Green Technologies (녹색성장을 위한 녹색금융의 자본조달역할에 관한 연구)

  • Koo, Junghan;Son, Donghee;Jeon, Yongil
    • Environmental and Resource Economics Review
    • /
    • v.19 no.3
    • /
    • pp.659-688
    • /
    • 2010
  • Climate change induced by global warming has recently begun to inspire developed nations to introduce a new paradigm, called the sustainable (Green) growth, which entails both the prevention of environmental pollution and the attainment of sustainable growth. The sustainable (Green) growth is founded upon environmental factors that drive a new force of economic progress without deteriorating nature. Thus, the conservation of the environment under the new growth paradigm can be compatible with economic growth, although this was not feasible under conventional economic relations, called the Environmental Kutzets Curve. Sustainable (Green) finance is essential to achieving Green growth efficiently and effectively. Since the financial system for Green growth is at the early stage of implementation, the application of strategies for sustainable (Green) finance should be preceded by proper initiation and protection from the government. In order to establish a feasible strategy for financing green growth, we suggest an effective financial supporting system, taking different operational forms upon the broader stage of technological progress in each individual company.

  • PDF