• Title/Summary/Keyword: Carbon emission monitoring system

Search Result 34, Processing Time 0.025 seconds

Estimation of Risk from Air Pollution in the Underground Highway Proposed to Construct in Seoul, Korea

  • Lee, Ki-Young;Yukio-Yanagisawa
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.E
    • /
    • pp.397-400
    • /
    • 1993
  • The possible air pollution problems in a proposed underground highway are discussed using carbon monoxide (CO) as an indicator. Carbon monoxide concentrations in the underground highway depend on several factors, including the size of tunnel, the number of automobiles, the CO emission rate, and the tunnel ventilation rate. Using the estimated values, CO concentrations in the underground highway can be predicted. Without proper ventilation system, CO concentration in the underground highway can be dangerous level. However, the cost of operating the mandatory mechanical ventilation system may be tremendouslyy high and may be technically unrealistic to implement. If the underground highway is constructed with proper ventilation system, a continuous air pollution monitoring system with alarming function must be installed to alert personnel of serious air pollution built up in the underground highway. Traffic must be restricted, whenever the inside air pollution levels exceed agreed values. Short distances between evacuation exits are necessary for emergency situations or malfunction of ventilation system.

A Study on Educational Contents of Hybrid Electric Vehicle Using Real Time Monitoring System (실시간 모니터링 시스템을 이용한 하이브리드 자동차 교육용 콘텐츠에 관한 연구)

  • Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.443-448
    • /
    • 2018
  • Recently, Hybrid Electric Vehicle(: HEV) is in the spotlight to global warming caused by carbon dioxide and emission reduction. HEV consists of a combination of mechanical engine and electric motor system. The flow of energy required to drive a HEV depends on the driving conditions of the vehicle. In this paper, we study the contents of HEV education using real-time monitoring system. A real-time monitoring system consisting of hardware and virtual programs is used to simulate the overall operation of a HEV through simulations according to driving conditions and to explain how to learn through hardware.

Carbon emissions monitoring of angling boat for the largehead hairtail (Trichiurus lepturus) (갈치 채낚기어선의 온실가스 배출량 모니터링)

  • Euna YOON;Geunchang PARK;Yong Beom PYEON;Wooseok OH;Kyounghoon LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • This study examined the power consumption of angling boats during entry, departure, and fishing operations using a black box-type storage device. Through this analysis, it determined the energy consumption and carbon emissions of small fishing boats used for catching the largehead hairtail. The energy consumption and carbon emissions were calculated using formulas provided by the Korea Energy Agency, which incorporated updated emission coefficients from 2022. The findings revealed that the average power consumption of small fishing boats for the largehead hairtail was 546.3 kWh, with a total energy consumption of 0.1164 TOE and carbon emissions of 24.057 CO2. The average energy consumption was calculated at 0.0006 TOE per kilogram, and the carbon emissions were determined to be 0.135 CO2/kg.

Characterizing Spatiotemporal Variations and Mass Balance of CO2 in a Stratified Reservoir using CE-QUAL-W2 (CE-QUAL-W2를 이용한 성층 저수지에서 CO2의 시공간적 분포 및 물질수지 분석)

  • Park, Hyungseok;Chung, Sewoong
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.508-520
    • /
    • 2020
  • Dam reservoirs have been reported to contribute significantly to global carbon emissions, but unlike natural lakes, there is considerable uncertainty in calculating carbon emissions due to the complex of emission pathways. In particular, the method of calculating carbon dioxide (CO2) net atmospheric flux (NAF) based on a simple gas exchange theory from sporadic data has limitations in explaining the spatiotemporal variations in the CO2 flux in stratified reservoirs. This study was aimed to analyze the spatial and temporal CO2 distribution and mass balance in Daecheong Reservoir, located in the mid-latitude monsoon climate zone, by applying a two-dimensional hydrodynamic and water quality model (CE-QUAL-W2). Simulation results showed that the Daecheong Reservoir is a heterotrophic system in which CO2 is supersaturated as a whole and releases CO2 to the atmosphere. Spatially, CO2 emissions were greater in the lacustrine zone than in the riverine and transition zones. In terms of time, CO2 emissions changed dynamically according to the temporal stratification structure of the reservoir and temporal variations of algae biomass. CO2 emissions were greater at night than during the day and were seasonally greatest in winter. The CO2 NAF calculated by the CE-QUAL-W2 model and the gas exchange theory showed a similar range, but there was a difference in the point of occurrence of the peak value. The findings provide useful information to improve the quantification of CO2 emissions from reservoirs. In order to reduce the uncertainty in the estimation of reservoir carbon emissions, more precise monitoring in time and space is required.

Mechanical Seal의 이상설계 감시에 관한 연구

  • 임순재;최만용;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.166-171
    • /
    • 1992
  • Mechanical seals are generally used in the fields of industries as sealing devices. The failure of mechanical seals like crack, leakage, breakage fast and severe wear, excessive torque, and squeaking result in big problems. For the development of monitoring system, this study was carried out to identify abnormal phenomina on alumina(AI $\_$2/ O /sub3/) seal ring and resin bonded carbon ring, and to propose the proper parameter for monitoring failure on mechanical seals. Sliding were tests are conducted at 12 experimental conditions that contains 3 different contact pressure and 4 surface conditions. Torque, temperature, and acoustic emission are measured. Optical microstructure and scanning electron microscopy are observed for the wear processing every 10 minute sliding at rotation speed of 1750 RPM.

Review of the Estimation Method of Methane Emission from Waste Landfill for Korean Greenhouse Gas and Energy Target Management System (온실가스·에너지 목표관리제를 위한 폐기물 매립시설 메탄배출량의 적정 산정방법에 관한 고찰)

  • Seo, Dong-Cheon;Nah, Je-Hyun;Bae, Sung-Jin;Lee, Dong-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.867-876
    • /
    • 2013
  • To promote the carbon emission trading scheme and reduce greenhouse gas (GHG) emission as following 'Korean GHG & Energy Target Management System', GHG emissions should be accurately determined in each industrial sector. For the estimation method of GHG emission from waste landfill, there are several error parameters, therefore we reviewed the estimation method and proposed a revised method. Methane generation from landfill must be calculated by the selected method based on methane recovery rate, 0.75. However, this methodology is not considered about uncertainty factor. So it is desirable that $CH_4$ generation is estimated using first order decay model and methane recovery should use field monitoring data. If not, $CH_4$ recovery could be applied from other study results; 0.60 of operational landfill with gas vent and flaring system, 0.65 of operational site with landfill gas recovery system, 0.90 of closed landfill with final cover. Other parameters such as degradable organic carbon (DOC) and fraction of DOC decompose ($DOC_f$) need to derive the default value from studies to reflect a Korean waste status. Proper application of MCF that is selected by operation and management of landfill requires more precise criteria.

Development of an Energy MonItorIng System for Gas Scrubber (반도체 공정장비 Gas Scrubber의 에너지 모니터링 시스템개발)

  • Kim, Sun-Man;Im, Ik-Tea;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.13-17
    • /
    • 2011
  • We have developed a new energy-consuming monitoring system that has made it possible to measure the energy consumption of a gas scrubber, one of semiconductor processing equipments, and installed this system to the gas scrubber under operating at a manufacture site. Using this system, we have measured consumptions of electric power and processing gas consumed at standby to operating mode. In case of the gas scrubber, processing gas flows continuously into it at standby and operating mode. Therefore, if the electric power has been supplied, the processing gas can flows into the device for 24 hours. Moreover, at operating of gas scrubber, the amount of electricity consumption is 5 kWh. At Standby of gas scrubber, it spends 3kwh. It is certain that the energy consumption is greater at operating mode than at standby mode. The carbon emission rates from 24 hour gas scrubber operation are 236 $kgCO_2$/day of $N_2$, 57 $kgCO_2$/day of electric power and 0.001 $kgCO_2$/day of cooling water. Most of carbon is emitted from $N_2$ gas and electric power consumption.

Technology Trends of Smart Abnormal Detection and Diagnosis System for Gas and Hydrogen Facilities (가스·수소 시설의 스마트 이상감지 및 진단 시스템 기술동향)

  • Park, Myeongnam;Kim, Byungkwon;Hong, Gi Hoon;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.41-57
    • /
    • 2022
  • The global demand for carbon neutrality in response to climate change is in a situation where it is necessary to prepare countermeasures for carbon trade barriers for some countries, including Korea, which is classified as an export-led economic structure and greenhouse gas exporter. Therefore, digital transformation, which is one of the predictable ways for the carbon-neutral transition model to be applied, should be introduced early. By applying digital technology to industrial gas manufacturing facilities used in one of the major industries, high-tech manufacturing industry, and hydrogen gas facilities, which are emerging as eco-friendly energy, abnormal detection, and diagnosis services are provided with cloud-based predictive diagnosis monitoring technology including operating knowledge. Here are the trends. Small and medium-sized companies that are in the blind spot of carbon-neutral implementation by confirming the direction of abnormal diagnosis predictive monitoring through optimization, augmented reality technology, IoT and AI knowledge inference, etc., rather than simply monitoring real-time facility status It can be seen that it is possible to disseminate technologies such as consensus knowledge in the engineering domain and predictive diagnostic monitoring that match the economic feasibility and efficiency of the technology. It is hoped that it will be used as a way to seek countermeasures against carbon emission trade barriers based on the highest level of ICT technology.

Optimal CO2 Enrichment Considering Emission from Soil for Cucumber Greenhouses

  • Lee, DongHoon;Lee, KyouSeung;Cho, Yong Jin;Choi, Jong-Myoung;Kim, Hak-Jin;Chung, Sun-Ok
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.501-508
    • /
    • 2012
  • Reducing carbon dioxide ($CO_2$) exhaust has become a major issue for society in the last few years, especially since the initial release of the Kyoto Protocol in 1997 that strictly limited the emissions of greenhouse gas for each country. One of the primary sectors affecting the levels of atmospheric greenhouse gases is agriculture where $CO_2$ is not only consumed by plants but also produced from various types of soil and agricultural ecosystems including greenhouses. In greenhouse cultivation, $CO_2$ concentration plays an essential role in the photosynthesis process of crops. Optimum control of greenhouse $CO_2$ enrichment based on accurate monitoring of the added $CO_2$ can improve profitability through efficient crop production and reduce environmental impact, compared to traditional management practices. In this study, a sensor-based control system that could estimate the required $CO_2$ concentration considering emission from soil for cucumber greenhouses was developed and evaluated. The relative profitability index (RPI) was defined by the ratio of growth rate to supplied $CO_2$. RPI for a greenhouse controlled at lower set point of $CO_2$ concentration (500 ${\mu}mol{\cdot}mol^{-1}$) was greater than that of greenhouse at higher set point (800 ${\mu}mol{\cdot}mol^{-1}$). Evaluation tests to optimize $CO_2$ enrichment concluded that the developed control system would be applicable not only to minimize over-exhaust of $CO_2$ but also to maintain the crop profitability.

Intensive Monitoring Survey of Nearby Galaxies (IMSNG) : Constraints on the Progenitor System of a Type Ia Supernova SN 2019ein from Its Early Light Curve

  • Lim, Gu;Im, Myungshin;Kim, Dohyeong;Paek, Gregory S.H.;Choi, Changsu;Kim, Sophia;Hwang, Sungyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.36.1-36.1
    • /
    • 2020
  • The progenitor of Type Ia supernovae (SNe Ia) is mainly believed to be a carbon/oxygen white dwarf (WD) with non-degenerate (single degenerate) or another WD companion (double degenerate). However, there is little observational evidence of their progenitor system. Recent studies suggest that shock-breakout cooling emission after the explosion can constrain the size of the progenitor system. To do so, we obtained a optical/Near-IR light curve of SN 2019ein, a normal but slightly sub-luminous type Ia supernova, from the very early phase using our high-cadence observation of Intensive Monitoring Survey of Nearby Galaxies (IMSNG). Assuming the expanding fireball model, the simple power-law fitting of the early part of the light curve gives power indices of 1.91 (B) and 2.09 (R) implying radioactive decay of 56Ni is the dominant energy source. By comparison with the expected light curve of the cooling emission, the early observation provides us an upper limit of the companion size of R∗≤1R⊙. This result suggests that we can exclude a large companion such as red giants, which is consistent with the previous study.

  • PDF