• 제목/요약/키워드: Carbon cycling

검색결과 250건 처리시간 0.021초

The Partitioning of Organic Carbon Cycle in Coastal Sediments of Kwangyang Bay

  • Han, Myung-Woo;Lee, In-Ho;Kim, Kee-Hyun;Noh, Il
    • Journal of the korean society of oceanography
    • /
    • 제32권3호
    • /
    • pp.103-111
    • /
    • 1997
  • Biogeochemical cycling of organic carbon is quantitatively partitioned in terms of 1) flux to the ocean bottom, 2) benthic utilization at or near the sediment-water interface, 3) remineralization and 4) burial within sediments, by making an independent determination for each component process from a single coastal site in Kwangyang Bay. The partitioning suggests that the benthic utilization at or near the sediment-water interface is the major mode of organic carbon cycling at the site. The benthic utilization takes 61.8% (441.6 gCm$^{-2}$ yr $^{-1}$) of the total near-bottem organic carbon flux, 714.6 gCm $^{-2}$yr$^{-1}$, and far exceeds the remineralization of organic carbon within the sediments which amounts only to 6% (41.24 gCm$^{-2}$yr$^{-1}$) of the total near-bottom flux. The residence time is about 1.6 years for the sedimentary metabolic organic carbon in the upper 45 cm. The dominant partitioning of the benthic utilization in the carbon budget suggests that most of labile organic carbons are consumed at or near the sediment-water interface and are left over to the sediment column by significantly diminished amounts.

  • PDF

Electrochemical Characteristics of Carbon-coated Si/Cu/graphite Composite Anode

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Won-Il;Cho, Byung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권7호
    • /
    • pp.1607-1610
    • /
    • 2009
  • The carbon-coated Si/Cu powder has been prepared by mechanical ball milling and hydrocarbon gas decomposition methods. The phase of Si/Cu powder was analyzed using X-ray diffraction (XRD), dispersive Raman spectroscopy, electron probe microanalysis (EPMA) and transmission electron microscope (TEM). The carbon-coated Si/Cu powders were used as anode active material for lithium-ion batteries. Their electrochemical properties were investigated by charge/discharge test using commercial LiCo$O_2$ cathode and lithium foil electrode, respectively. The surface phase of Si/Cu powders consisted of carbon phase like the carbon nanotubes (CNTs) with a spacing layer of 0.35 nm. The carbon-coated Si/Cu/graphite composite anode exhibited a higher capacity than commercial graphite anode. However, the cyclic efficiency and the capacity retention of the composite anode were lower compared with graphite anode as cycling proceeds. This effect may be attributed to some mass limitations in LiCo$O_2$ cathode materials during the cycling.

A novel free-standing anode of CuO nanorods in carbon nanotube webs for flexible lithium ion batteries

  • Lee, Sehyun;Song, Hyeonjun;Hwang, Jun Yeon;Kim, Seung Min;Jeong, Youngjin
    • Carbon letters
    • /
    • 제27권
    • /
    • pp.98-107
    • /
    • 2018
  • Free-standing electrodes of CuO nanorods in carbon nanotubes (CNTs) are developed by synthesizing porous CuO nanorods throughout CNT webs. The electrochemical performance of the free-standing electrodes is evaluated for their use in flexible lithium ion batteries (LIBs). The electrodes comprising CuO@CNT nanocomposites (NCs) were characterized by charge-discharge testing, cyclic voltammetry, and impedance measurement. These structures are capable of accommodating a high number of lithium ions as well as increasing stability; thus, an increase of capacity in long-term cycling and a good rate capability is achieved. We demonstrate a simple process of fabricating free-standing electrodes of CuO@CNT NCs that can be utilized in flexible LIBs with high performance in terms of capacity and cycling stability.

The Effect of the Ratio of C45 Carbon to Graphene on the Si/C Composite Materials Used as Anode for Lithium-ion Batteries

  • Hoang Anh Nguyen;Thi Nam Pham;Le Thanh Nguyen Huynh;Tran Ha Trang Nguyen;Viet Hai Le;Nguyen Thai Hoang;Thi Thom Nguyen;Thi Thu Trang Nguyen;Dai Lam Tran;Thi Mai Thanh Dinh
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.291-298
    • /
    • 2024
  • Due to its high theoretical capacity, Silicon (Si) has shown great potential as an anode material for lithium-ion batteries (LIBs). However, the large volume change of Si during cycling leads to poor cycling stability and low Coulombic efficiency. In this study, we synthesized Si/Carbon C45:Graphene composites using a ball-milling method with a fixed Si content (20%) and investigated the influence of the C45/Gr ratio on the electrochemical performance of the composites. The results showed that carbon C45 networks can provide good conductivity, but tend to break at Si locations, resulting in poor conductivity. However, the addition of graphene helps to reconnect the broken C45 networks, improving the conductivity of the composite. Moreover, the C45 can also act as a protective coating around Si particles, reducing the volume expansion of Si during charging/discharging cycles. The Si/C45:Gr (70:10 wt%) composite exhibits improved electrochemical performance with high capacity (~1660 mAh g-1 at 0.1 C) and cycling stability (~1370 mAh g-1 after 100 cycles). This work highlights the effective role of carbon C45 and graphene in Si/C composites for enhancing the performance of Si-based anode materials for LIBs.

수문생지화학적 접근을 통한 광릉 산림 유역의 물과 탄소 순환 이해 (Hydro-Biogeochemical Approaches to Understanding of Water and Carbon Cycling in the Gwangneung Forest Catchment)

  • 김수진;이동호;김준;김승
    • 한국농림기상학회지
    • /
    • 제9권2호
    • /
    • pp.109-120
    • /
    • 2007
  • 한국 산악 경관에서의 물과 탄소의 순환을 이해하고 예측하기 위해서는 물과 탄소의 유역 내 이동 경로, 저류, 체류시간 및 상호작용에 대한 정보가 선행되어야 한다. 이와 관련하여 본 논문에서는 HydroKorea 및 CarboKorea 연구에서 사용하고 있는 연구 방법들과 현재까지의 주요 결과를 소개한다. 유역 내 다양한 수문순환 과정을 이해하기 위해 지하수위 변동, end-member mixing model, 교차상관 분석, 대기 기원의 천연방사성 동위원소를 이용하였다. 광릉 산림 유역에서는 지표유출의 기여도가 상대적으로 높았고, 강수량과 강수강도 및 패턴의 변화가 물의 유출경로와 체류 시간에 영향을 주었다. 특히, 몬순으로 인한 강수형태와 유역 내 수문과정의 변화가 탄소 순환에 영향을 미쳤는데, 지속적인 강우의 유입이 산림토양의 표층에 분포하는 고농도의 용존유기탄소의 유출을 증가시켰다. 본 연구를 통하여 시도된 수문순환과정에 대한 정량적인 규명은 기후 변화가 수자원 관리와 산림유역 탄소순환에 미치는 영향을 예측하기 위한 과학적 방법론을 확립하는데 기여할 것으로 기대된다.

Electrochemical Characterization of Electric Double Layer Capacitors Assembled with Pyrrolidinium-Based Ionic Liquid Electrolytes

  • Cho, Jinhyun;Shin, Won-Kyung;Kim, Dong-Won;Kim, Young Rae;Lee, Byung Jun;Kim, Sang-Gil
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권3호
    • /
    • pp.199-205
    • /
    • 2016
  • We present the electrochemical performance of electric double layer capacitors (EDLCs) assembled with pyrrolidinium (Pyr)-based ionic liquid electrolytes at 55 ℃. Cations with various alkyl chain lengths were employed in Pyr-based ionic liquids to investigate the effect of cation structure on the cycling stability of EDLCs. The EDLCs exhibited initial specific capacitances ranging from 122.4 to 131.6 F g−1 based on activated carbon material at 55 ℃. Cycling data and XPS results demonstrate that Pyr-based ionic liquid with longer alkyl chain is more effective for enhancing the cycling stability of EDLC by suppressing the reductive decomposition of pyrrolidinium cations during cycling at high temperatures.

Post-Treatment of Printed Carbon Nanotubes for Vertical Alignment

  • Kim, Yong-C.;Sohn, K.H.;Cho, Y.M.;Yoo, Eun-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.692-695
    • /
    • 2004
  • Fabrication of photosensitive carbon nanotubes paste and its post-treatment has been developed for high resolution with good electron emission uniformity. We report novel post-treatment techniques including rubber-rolling and multiple field emission cycling from which we could improve the field emission properties of printed carbon nanotubes. These techniques would be easily applicable to large area field emission display using paste of carbon nanotubes

  • PDF

Spherical Silicon/CNT/Carbon Composite Wrapped with Graphene as an Anode Material for Lithium-Ion Batteries

  • Shin, Min-Seon;Choi, Cheon-Kyu;Park, Min-Sik;Lee, Sung-Man
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권1호
    • /
    • pp.159-166
    • /
    • 2022
  • The assembly of the micron-sized Si/CNT/carbon composite wrapped with graphene (SCG composite) is designed and synthesized via a spray drying process. The spherical SCG composite exhibits a high discharge capacity of 1789 mAh g-1 with an initial coulombic efficiency of 84 %. Moreover, the porous architecture of SCG composite is beneficial for enhancing cycling stability and rate capability. In practice, a blended electrode consisting of spherical SCG composite and natural graphite with a reversible capacity of ~500 mAh g-1, shows a stable cycle performance with high cycling efficiencies (> 99.5%) during 100 cycles. These superior electrochemical performance are mainly attributed to the robust design and structural stability of the SCG composite during charge and discharge process. It appears that despite the fracture of micro-sized Si particles during repeated cycling, the electrical contact of Si particles can be maintained within the SCG composite by suppressing the direct contact of Si particles with electrolytes.

리튬이온전지 음극의 고속 성능 향상을 위한 도전재 복합화 (Composited Conductive Materials for Enhancing the Ultrafast Performance for Anode in Lithium-Ion Battery)

  • 성기욱;안효진
    • 한국재료학회지
    • /
    • 제32권11호
    • /
    • pp.474-480
    • /
    • 2022
  • Lithium-ion batteries (LIBs) are powerful energy storage devices with several advantages, including high energy density, large voltage window, high cycling stability, and eco-friendliness. However, demand for ultrafast charge/discharge performance is increasing, and many improvements are needed in the electrode which contains the carbon-based active material. Among LIB electrode components, the conductive additive plays an important role, connecting the active materials and enhancing charge transfer within the electrode. This impacts electrical and ionic conductivity, electrical resistance, and the density of the electrode. Therefore, to increase ultrafast cycling performance by enhancing the electrical conductivity and density of the electrode, we complexed Ketjen black and graphene and applied conductive agents. This electrode, with the composite conductive additives, exhibited high electrical conductivity (12.11 S/cm), excellent high-rate performance (28.6 mAh/g at current density of 3,000 mA/g), and great long-term cycling stability at high current density (88.7 % after 500 cycles at current density of 3,000 mA/g). This excellent high-rate performance with cycling stability is attributed to the increased electrical conductivity, due to the increased amount of graphene, which has high intrinsic electrical conductivity, and the high density of the electrode.