Browse > Article
http://dx.doi.org/10.5229/JECST.2016.7.3.199

Electrochemical Characterization of Electric Double Layer Capacitors Assembled with Pyrrolidinium-Based Ionic Liquid Electrolytes  

Cho, Jinhyun (Department of Chemical Engineering, Hanyang University)
Shin, Won-Kyung (Department of Chemical Engineering, Hanyang University)
Kim, Dong-Won (Department of Chemical Engineering, Hanyang University)
Kim, Young Rae (EDLC PT, VITZROCELL Co., Ltd.)
Lee, Byung Jun (EDLC PT, VITZROCELL Co., Ltd.)
Kim, Sang-Gil (EDLC PT, VITZROCELL Co., Ltd.)
Publication Information
Journal of Electrochemical Science and Technology / v.7, no.3, 2016 , pp. 199-205 More about this Journal
Abstract
We present the electrochemical performance of electric double layer capacitors (EDLCs) assembled with pyrrolidinium (Pyr)-based ionic liquid electrolytes at 55 ℃. Cations with various alkyl chain lengths were employed in Pyr-based ionic liquids to investigate the effect of cation structure on the cycling stability of EDLCs. The EDLCs exhibited initial specific capacitances ranging from 122.4 to 131.6 F g−1 based on activated carbon material at 55 ℃. Cycling data and XPS results demonstrate that Pyr-based ionic liquid with longer alkyl chain is more effective for enhancing the cycling stability of EDLC by suppressing the reductive decomposition of pyrrolidinium cations during cycling at high temperatures.
Keywords
Ionic liquid; Pyrrolidinium cation; Reductive stability; Electric double layer capacitor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Q. Zhou, P. D. Boyle, L. Malpezzi, A. Mele, J.-H. Shin, S. Passerini and W. A. Henderson, Chem. Mater., 2011, 23, 4331-4337.   DOI
2 M. Galinski, A. Lewandowski and I. Stepniak, Electrochim. Acta., 2006, 51, 5567-5580.   DOI
3 S. Pandey, Anal. Chim. Acta, 2006, 556, 38-45.   DOI
4 M. Armand, F. Endres, D. R. MacFarlane, H. Ohno and B. Scrosati, Nat. Mater., 2009, 8, 621-629.   DOI
5 W. A. Henderson and S. Passerini, Chem. Mater., 2004, 16, 2881-2885.   DOI
6 J. Vatamanu, Z. Hu, D. Bedrov, C. Perez and Y. Gogotsi, J. Phys. Chem. Lett., 2013, 4, 2829-2837.   DOI
7 D. R. MacFarlane, M. Forsyth, P. C. Howlett, J. M. Pringle, J. Sun, G. Annat, W. Neil and E. I. Izgorodina, Acc. Chem. Res., 2007, 40, 1165-1173.   DOI
8 S. R. Sivakkumar, D. R. MacFarlane, M. Forsyth and D. W. Kim, J. Electrochem. Soc., 2007, 154, A834-A838.   DOI
9 A. Lewandowski, A. Olejniczak, M. Galinski and I. Stepniak, J. Power Sources, 2010, 195, 5814-5819.   DOI
10 M. Mastragostino and F. Soavi, J. Power Sources, 2007, 174, 89-93.   DOI
11 C. Arbizzani, S. Beninati, M. Lazzari, F. Soavi and M. Mastragostino, J. Power Sources, 2007, 174, 648-652.   DOI
12 C. Arbizzani, M. Biso, D. Cericola, M. Lazzari, F. Soavi and M. Mastragostino, J. Power Sources, 2008, 185, 1575-1579.   DOI
13 B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, G. Wang and Y. Yang, J. Power Sources, 2006, 158, 773-778.   DOI
14 A. Balducci, R. Dugas, P. L. Taberna, P. Simon, D. Plee, M. Mastragostino and S. Passerini, J. Power Sources, 2007, 165, 922-927.   DOI
15 A. Lewandowski and A. Swiderska, Solid State Ionics, 2003, 161, 243-249.   DOI
16 L. L. Zhang and X. S. Zhao, Chem. Soc. Rev., 2009, 38, 2520-2531.   DOI
17 M. Ue, K. Ida and S. Mori, J. Electrochem. Soc., 1994, 141, 2989-2994.   DOI
18 T. Sato, G. Masuda and K. Takagi, Electrochim. Acta, 2004, 49, 3603-3611.   DOI
19 M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara and Y. Ito, J. Electrochem. Soc., 2003, 150, A499-A502.   DOI
20 A. Lewandowski and M. Galinski, J. Phys. Chem. Solids, 2004, 65, 281-286.   DOI
21 J. D. Stenger-Smith, C. K. Webber, N. Anderson, A. P. Chafin, K. Zong and J. R. Reynolds, J. Electrochem. Soc., 2002, 149, A973-A977.   DOI
22 A. Balducci, W. A. Henderson, M. Mastragostino, S. Passerini, P. Simon and F. Soavi, Electrochim. Acta, 2005, 50, 2233-2237.   DOI
23 B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, G. Wang and Y. Yang, J. Power Sources, 2006, 158, 773-778.   DOI
24 V. Khomenko, E. Frackowiak and F. Beguin, Electrochim. Acta, 2005, 50, 2499-2506.   DOI
25 J. N. Barisci, G. G. Wallace, D. R. MacFarlane and R. H. Baughman, Electrochem. Comm., 2004, 6, 22-27.   DOI
26 H. Kurig, M. Vestli, K. Tonurist, A. Janes and E. Lust, J. Electrochem. Soc., 2012, 159, A944-A951.   DOI
27 A. Brandt, S. Pohlmann, A. Varzi, A. Balducci and S. Passerini, MRS Bulletin, 2013, 38, 554-559.   DOI
28 C. Largeot, P. L. Taberna, Y. Gogotsi and P. Simon, Electrochem. Solid-State Lett., 2011, 14, A174-A176.   DOI
29 M. Montanino, F. Alessandrini, S. Passerini and G. B. Appetecchi, Electrochim. Acta, 2013, 96, 124-133.   DOI
30 S. Paul, J. H. Kim and D. W. Kim, J. Electrochem. Sci. and Tech., 2011, 2, 91-96.   DOI
31 M. C. Kroon, W. Buijs, C. J. Peters and G.-J. Witkamp, Green Chem., 2006, 8, 241-245.   DOI
32 Z. Yue, J. Economy and G. Bordson, J. Mater. Chem., 2006, 16, 1456-1461.   DOI
33 M. Schulze, K. Bolwin, E. Giilzow and W. Schnurnberger, Fresenius. J. Anal. Chem., 1995, 353, 778-784.   DOI
34 A. M. Bittner, M. Zhu, Y. Yang, H. F. Waibel, M. Konuma, U. Starke and C. J. Weber, J. Power Sources, 2012, 203, 262-273.   DOI
35 S. Men, K. R. J. Lovelock and P. Licence, Phys. Chem. Chem. Phys., 2011, 13, 15244-15255.   DOI