DOI QR코드

DOI QR Code

The Effect of the Ratio of C45 Carbon to Graphene on the Si/C Composite Materials Used as Anode for Lithium-ion Batteries

  • Hoang Anh Nguyen (Vietnam National University Ho Chi Minh City (VNUHCM)) ;
  • Thi Nam Pham (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Le Thanh Nguyen Huynh (Vietnam National University Ho Chi Minh City (VNUHCM)) ;
  • Tran Ha Trang Nguyen (Vietnam National University Ho Chi Minh City (VNUHCM)) ;
  • Viet Hai Le (Vietnam National University Ho Chi Minh City (VNUHCM)) ;
  • Nguyen Thai Hoang (Vietnam National University Ho Chi Minh City (VNUHCM)) ;
  • Thi Thom Nguyen (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Thi Thu Trang Nguyen (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Dai Lam Tran (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Thi Mai Thanh Dinh (Institute for Tropical Technology, Vietnam Academy of Science and Technology)
  • Received : 2023.09.19
  • Accepted : 2023.12.22
  • Published : 2024.05.31

Abstract

Due to its high theoretical capacity, Silicon (Si) has shown great potential as an anode material for lithium-ion batteries (LIBs). However, the large volume change of Si during cycling leads to poor cycling stability and low Coulombic efficiency. In this study, we synthesized Si/Carbon C45:Graphene composites using a ball-milling method with a fixed Si content (20%) and investigated the influence of the C45/Gr ratio on the electrochemical performance of the composites. The results showed that carbon C45 networks can provide good conductivity, but tend to break at Si locations, resulting in poor conductivity. However, the addition of graphene helps to reconnect the broken C45 networks, improving the conductivity of the composite. Moreover, the C45 can also act as a protective coating around Si particles, reducing the volume expansion of Si during charging/discharging cycles. The Si/C45:Gr (70:10 wt%) composite exhibits improved electrochemical performance with high capacity (~1660 mAh g-1 at 0.1 C) and cycling stability (~1370 mAh g-1 after 100 cycles). This work highlights the effective role of carbon C45 and graphene in Si/C composites for enhancing the performance of Si-based anode materials for LIBs.

Keywords

Acknowledgement

This work is funded by the Ministry of Science and Technology (MOST) under grant NDT/CN/21/23.

References

  1. A. Brecher, Transit bus applications of lithium-ion batteries: Progress and prospects, In: G. Pistoia (ed.), Lithium-Ion Batteries, Elsevier B.V., 2014, 177-203. 
  2. G. Zubi, R. Dufo-Lopez, M. Carvalho, and G. Pasaoglu, Renew. Sustain. Energy Rev., 2018, 89, 292-308. 
  3. H. A. Nguyen, P. P. N. Le, L. T. N. Huynh, T. V. Man, and M. L. P. Le, VNUHCM Journal of Natural Sciences, 2019, 3(1), 46-54. 
  4. C.-H. Jung, H. Shim, D. Eum, and S.-H. Hong, J. Korean Ceram. Soc., 2021, 58, 1-27. 
  5. C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nature Nanotech., 2008, 3(1), 31-35. 
  6. S. Yang, P. Y. Zavalij, and M. S. Whittingham, Electrochem. Commun., 2003, 5(7), 587-590. 
  7. G. Zheng, S. W. Lee, Z. Liang, H.-W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu, and Y. Cui, Nature Nanotech., 2014, 9(8), 618-623. 
  8. H. Wu and Y. Cui, Nano Today, 2012, 7(5), 414-429. 
  9. J. Wang, Y. Cui, and D. Wang, Adv. Mater., 2019, 31(38), 1801993. 
  10. P. U. Nzereogu, A. D. Omah, F. I. Ezema, E. I. Iwuoha, and A. C. Nwanya, Appl. Surf. Sci. Adv., 2022, 9, 100233. 
  11. K. Xu, A silicon future, In: C. Ban and K. Xu (eds.), Lithium-ion Batteries Enabled by Silicon Anodes, IET Digital Library, 2021, 405. 
  12. X. Ding, H. Wang, X. Liu, Z. Gao, Y. Huang, D. Lv, P. He, and Y. Huang, RSC Adv., 2017, 7(26), 15694-15701. 
  13. S. Suresh, Z. P. Wu, S. F. Bartolucci, S. Basu, R. Mukherjee, T. Gupta, P. Hundekar, Y. Shi, T.-M. Lu, and N. Koratkar, ACS Nano, 2017, 11(5), 5051-5061. 
  14. X. Ding, X. Liu, Y. Huang, X. Zhang, Q. Zhao, X. Xiang, G. Li, P. He, Z. Wen, J. Li, and Y. Huang, Nano Energy, 2016, 27, 647-657. 
  15. N. Li, S. Jin, Q. Liao, H. Cui, and C. X. Wang, Nano Energy, 2014, 5, 105-115. 
  16. F. Li, H. Yue, Z. Yang, X. Li, Y. Qin, and D. He, Mater. Lett., 2014, 128, 132-135. 
  17. M. J. Loveridge, M. J. Lain, Q. Huang, C. Wan, A. J. Roberts, G. S. Pappas, and R. Bhagat, Phys. Chem. Chem. Phys., 2016, 18, 30677-30685. 
  18. Q. Huang, M. J. Loveridge, R. Genieser, M. J. Lain, and R. Bhagat, Sci. Rep., 2018, 8(1), 1386. 
  19. S.-L. Chou, J.-Z. Wang, M. Choucair, H.-K. Liu, J. A. Stride, and S.-X. Dou, Electrochem. Commun., 2010, 12(2), 303-306. 
  20. I. H. Son, J. H. Park, S. Park, K. Park, S. Han, J. Shin, S.-G. Doo, Y. Hwang, H. Chang, and J. W. Choi, Nat. Commun., 2017, 8(1), 1561. 
  21. J. Yang, B. F. Wang, K. Wang, Y. Liu, J. Y. Xie, and Z. S. Wen, Electrochem. Solid-State Lett., 2003, 6(8), A154. 
  22. Y. Liu, Y. Zhang, Y. Du, Y. Zhou, G. Hou, T. D. Lam, Y. Yang, F. Yuan, and X. Wang, Energy Technol., 2019, 7(7), 1900037. 
  23. S. Palumbo, L. Silvestri, A. Ansaldo, R. Brescia, F. Bonaccorso, and V. Pellegrini, ACS Appl. Energy Mater., 2019, 2(3), 1793-1802. 
  24. X. Zhang, D. Wang, X. Qiu, Y. Ma, D. Kong, K. Mullen, X. Li, and L. Zhi, Nat. Commun., 2020, 11(1), 3826. 
  25. J. Han, X. Tang, S. Ge, Y. Shi, C. Zhang, F. Li, and S. Bai, J. Mater. Sci. Technol., 2021, 80, 259-265.