• Title/Summary/Keyword: Carbon Respiration

Search Result 232, Processing Time 0.023 seconds

Estimation of Soil Microbiological Respiration Volume in Forest Ecosystem in the Sobaeksan National Park of Korea (소백산국립공원 산림생태계의 토양미생물호흡량 평가)

  • Lee, Sang-Jin;Lee, Chang-Min;Yang, Seung-Ah;Jung, Hae-Joong;Lee, Jong-Myung;Min, Young-Gi;Kim, Jin-Won;Myung, Hyun-Ho;Park, Hong-Chul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.3
    • /
    • pp.19-28
    • /
    • 2023
  • The purpose of this study is to estimate carbon dioxide emissions from soil microbial respiration by forest type of Sobaeksan National Park. As a result of estimating the annual soil microbiological respiration volume by forest type in Sobaeksan National Park, broad-leaved forests, coniferous forest, artificial forests were similar to around 19.5 CO2-ton/ha/yr. In the case of coniferous forests in sub-alpine and grassland near Birobong Peak, 12.2 CO2-ton/ha/yr and 8.1 CO2-ton/ha/yr, respectively, were lower than general forest areas. And as a result of analyzing the changes in soil microbiological respiration rate according to forest type in Sobaeksan National Park, the soil microbiological respiration rate in coniferous forests, broad-leaved forests, artificial forests, and sub-alpine areas was the highest in the July survey in summer and the lowest in November in late autumn. The change in soil microbial respiratory volume according to the measurement time in Sobaeksan National Park was the highest between 12:00 and 16:00, when the soil temperature was generally the highest among the days. It is known that the soil temperature is relatively low and the amount of soil microbial respiration decreases during winter, and the change in respiratory volume over the measurement time during the day was the smallest in November, when the amount of soil microbial respiration was relatively smaller than the May-September survey. However, this study has limitations in revealing the causal relationship of various environmental factors that affect the soil microbial respiration. Therefore, it is suggested that long-term research and investigation of various factors affecting soil respiration are needed to understand the carbon cycle of forest ecosystems.

Effect of Soil Respiration on Light Fraction-C and N Availability in Soil Applied with Organic Matter

  • Ko, Byong-Gu;Lee, Chang-Hoon;Kim, Myung-Sook;Kim, Gun-Yeob;Park, Seong-Jin;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.510-516
    • /
    • 2016
  • Soil respiration has been recognized as a key factor of the change of organic matter and fertility due to the carbon and nitrogen mineralization. In this study, we evaluated the effect of soil respiration on the light fraction-C and inorganic N content depending on temperature in soil applied with organic matter. Soil respiration was calculated by using total $CO_2$ flux released from soil applied with $2Mg\;ha^{-1}$ of rice straw compost and rye for 8 weeks incubation at 15, 25, $35^{\circ}C$ under incubation test. After incubation test, light fraction and inorganic N content were investigated. Rye application dramatically increased soil respiration with increasing temperature. $Q_{10}$ value of rye application was 1.69, which was higher 27% than that of rice straw compost application. Light-C and $NO_3-N$ contents were negatively correlated to soil respiration. Light-C in rye application more decreased than that in rice straw compost with temperature levels. These results indicate that temperature sensitivity of soil respiration could affect soil organic mater content and N availability in soil due to carbon availability. Also, light fraction would be useful indicator to evaluate decomposition rate of organic matter in soil under a short-term test.

Short-term effects of fertilizer application on soil respiration in red pine stands

  • Kim, Choonsig;Jeong, Jaeyeob;Bolan, Nanthi S.;Naidu, Ravi
    • Journal of Ecology and Environment
    • /
    • v.35 no.4
    • /
    • pp.307-311
    • /
    • 2012
  • This study was conducted to evaluate the dynamics of soil respiration (total soil and heterotrophic respiration) following fertilizer application in red pine forests. Fertilizer (N:P:K = 113:150:37 kg/ha), which reflects current practices in Korean forest, was applied in April 2011, and total soil and heterotrophic respiration rates were monitored from April 2011 to March 2012. Monthly variation of total soil and heterotrophic respiration rates were similar between the fertilizer and control treatments, as soil temperature was the dominant factor controlling the both rates. Total soil respiration rates during the study period were not significantly different between the fertilizer (0.504 g $CO_2\;m^{-2}\;h^{-1}$) and control (0.501 g $CO_2\;m^{-2}\;h^{-1}$) treatments. However, the proportion of heterotrophic respiration was higher in the fertilizer (78% of total soil respiration rates) than in the control (62% of total soil respiration rates) treatments. These results suggest that current fertilizer practices in Korea forest soil do not substantially affect total soil respiration rates.

Valuation of Ecosystem Services through Organic Carbon Distribution and Cycling in the Quercus mongolica Forest at Mt. Worak National Park (월악산 신갈나무림의 유기탄소 분포와 순환을 통한 생태계서비스 가치평가)

  • Won, Ho-Yeon;Shin, Chang-Hwan;Mun, Hyeong-Tae
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.315-325
    • /
    • 2014
  • Valuation of ecosystem services through organic carbon distribution and cycling in the Quercus mongolica forest at Mt. Worak national park were investigated from May 2012 through April 2013. The amount of carbon allocated to above and below ground biomass was 81.94 and 20.53 ton C/ha. Amount of organic carbon in litter layer was 6.49 ton C/ha. Amount of organic carbon within 50 soil depth was 141.23 ton C $ha^{-1}$ $50cm-depth^{-1}$. Total amount of organic carbon in this Quercus mongolica forest was estimated to 250.19 ton C $ha^{-1}$. The estimated amount of won in this Quercus mongolica forest in terms of total organic carbon was about 5.27 million won $ha^{-1}$. The amount of carbon evolved through soil respiration was 7.31 ton C $ha^{-1}yr^{-1}$. The amount of carbon evolved through microbial respiration and root respiration was 3.58 and 3.73 ton C $ha^{-1}yr^{-1}$, respectively. The amount of organic carbon absorbed from the atmosphere of this Quercus mongolica forest was 1.61 ton C $ha^{-1}yr^{-1}$ when estimated from the difference between net primary production and microbial respiration. This amount will come to about 33,000 won $ha^{-1}yr^{-1}$ in Korean currency.

Valuation of Ecosystem Services through Organic Carbon Distribution and Cycling in the Pinus densiflora Forest in Mt. Worak National Park (월악산 소나무림의 유기탄소 분포와 순환을 통한 생태계서비스 가치평가)

  • Won, Ho-Yeon;Lee, Young-Sang;Mun, Hyeong-Tae
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.332-338
    • /
    • 2015
  • Valuation of ecosystem services through organic carbon distribution and cycling in the Pinus densiflora forest at Mt. Worak National Park were investigated from January 2013 through December 2013. The amount of carbon allocated to above and below ground biomass was 32.17 and 8.04 ton C $ha^{-1}$. Amount of organic carbon in litter layer was 5.55 ton C $ha^{-1}$. Amount of organic carbon within 50cm soil depth was 58.62 ton C $ha^{-1}$ 50cm-$depth^{-1}$. Total amount of organic carbon in this Pinus densiflora forest was estimated to 104.38 ton C $ha^{-1}$. The estimated amount of won in this Pinus densiflora forest in terms of total organic carbon was about 10.44 million won $ha^{-1}$. The amount of carbon evolved through soil respiration was 4.44 ton C $ha^{-1}yr^{-1}$. The amount of carbon evolved through microbial respiration and root respiration was 2.18 and 2.27 ton C $ha^{-1}yr^{-1}$, respectively. The amount of organic carbon absorbed from the atmosphere of this Pinus densiflora forest was 0.44 ton C $ha^{-1}yr^{-1}$ when estimated from the difference between net primary production and microbial respiration. This amount will come to about 44,000 won $ha^{-1}$ in Korean currency.

Organic Carbon Distribution and Budget in the Pinus densiflora Forest at Mt. Worak National Park (월악산 소나무림의 유기탄소 분포 및 수지)

  • Lee, Ji-Young;Kim, Deok-Ki;Won, Ho-Yeon;Mun, Hyeong-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.5
    • /
    • pp.561-570
    • /
    • 2013
  • Organic carbon distribution and carbon budget of a Pinus densiflora forest in the Songgye valley of Mt. Worak National Park were investigated. Carbon in above and below ground standing biomass, litter layer, and soil organic carbon were measured from May 2011 through April 2012. For the estimation of carbon budget, soil respiration was measured. The amount of carbon allocated to above and below ground biomass was 52.25 and 14.52 ton C $ha^{-1}$. Amount of organic carbon in annual litterfall was 4.71 ton C $ha^{-1}$. Amount of organic carbon within 50cm soil depth was 58.56 ton C $ha^{-1}$ 50cm-$depth^{-1}$. Total amount of organic carbon in this Pinus densiflora forest was estimated to 130.04 ton C $ha^{-1}$. Amount of organic carbon in tree layer, shrub and herb layer was 4.12, 0.10 and 0.04 ton C $ha^{-1}yr^{-1}$ and total amount of organic carbon was 4.26 ton C $ha^{-1}yr^{-1}$. Amount of organic carbon returned to the forest via litterfall was 1.62 ton C $ha^{-1}yr^{-1}$. The amount of carbon evolved through soil respiration was 6.25 ton C $ha^{-1}yr^{-1}$. The amount of carbon evolved through microbial respiration and root respiration was 3.19 and 3.06 ton C $ha^{-1}yr^{-1}$. The amount of organic carbon absorbed from the atmosphere of this Pinus densiflora forest was 1.07 ton C $ha^{-1}yr^{-1}$ when it was estimated from the difference between Net Primary Production and microbial respiration.

Comparison of Soil Carbon Storage and Soil Respiration Among Agricultural Ecosystems Types and Their Relationship with Soil Environmental Factors (농경지 생태계 유형별 토양의 탄소 저장량과 토양호흡량 비교 및 토양환경요인과의 관계)

  • EungPill Lee;HeonMo Jeong;SungRyong Kang;Inyoung Jang
    • Journal of Wetlands Research
    • /
    • v.26 no.3
    • /
    • pp.298-310
    • /
    • 2024
  • In this study, we analyzed the results of previous studies on different types of agricultural ecosystems to understand how environmental factors in soils, which serve as significant carbon reservoirs within agricultural ecosystems, a type of terrestrial ecosystem, affect soil carbon storage and soil respiration. As a result, most previous studies have been conducted on paddy field and facility cultivation area. And, the carbon storage in the soil and the soil's chemical properties, such as soil pH, electrical conductivity, soil organic matter content, and total nitrogen content, were higher in paddy field and orchard compared to field, facility cultivation area, and other cultivation area. The soil respiration in paddy field was also higher than in other types of agricultural ecosystems. Furthermore, soil carbon storage showed a significant correlation with soil organic matter (R2=0.7237, p=0.0000), total nitrogen (R2=0.8419, p=0.0000), and available phosphorus (R2=0.3123, p=0.0024), while soil respiration had a significant relationship with soil organic matter (R2=0.5644, p=0.0000). In this study, agricultural ecosystems were found to act as carbon sinks, with soil carbon storage measured at 49.1±8.9 tons C ha-1 in orchard, 31.8±6.9 tons C ha-1 in paddy field, and 25.3±28.0 tons C ha-1 in facility cultivation area. Therefore, agricultural ecosystems need to manage soil carbon storage and carbon emissions through proper soil nutrient management.

Soil Carbon Cycling and Soil CO2 Efflux in a Red Pine (Pinus densiflora) Stand

  • Kim, Choon-Sig
    • Journal of Ecology and Environment
    • /
    • v.29 no.1
    • /
    • pp.23-27
    • /
    • 2006
  • This study was conducted to evaluate forest carbon cycling and soil $CO_2$ efflux rates in a 42-year-old pine (Pinus densiflora) stand located in Hamyang-gun, Korea. Aboveground and soil organic carbon storage, litterfall, litter decomposition, and soil $CO_2$ efflux rates were measured for one year. Estimated aboveground biomass carbon storage and increment in this stand were $3,250gC/m^2\;and\;156gC\;m^{-2}yr^{-1}$, respectively. Soil organic carbon storage at the depth of 30 cm was $10,260gC/m^2$ Mean organic carbon inputs by needle and total litterfall were $176gC\;m^{-2}yr^{-1}\;and\;235gC\;m^{-2}yr^{-1}$, respectively. Litter decomposition rates were faster in nne roots less than 2 mm diameter size ($<220\;g\;kg^{-1}yr^{-1}$) than in needle litter ($<120\;g\;kg^{-1}yr^{-1}$). Annual mean and total soil respiration rates were $0.37g\;CO_2m^{-2}h^{-1}$ and $2,732g\;CO_2m^{-2}yr^{-1}$ during the study period. A strong positive relationship existed between soil $CO_2$ efflux and soil temperature (r=0.8149), while soil $CO_2$ efflux responded negatively to soil pH (r=-0.3582).

Modeling Fresh Produce Respiration and Designing Modified Atmosphere Package

  • Lee, Dong-Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.13 no.3_4
    • /
    • pp.113-120
    • /
    • 2007
  • The method to characterize the fresh produce respiration was presented with possible application of modified atmosphere package design. Particularly the respiration model based on enzyme kinetics was introduced as function of oxygen and carbon dioxide concentrations. The method to estimate the equilibrated package atmosphere for any package conditions was presented by incorporation of $O_2$ and $CO_2$ permeabilities of the packaging film. Temperature dependences for fresh produce respiration and gas permeation were given by Arrhenius equation and then used to analyze the effect of temperature on the package atmosphere. An example analysis was presented for better understanding of the concept.

  • PDF

Analysis on the Results of Measured Concentration of the Combustion Gases Considering Respiration Characteristics in Gasoline Pool Fire (가솔린 풀 화재에서 인체 호흡량 변화를 고려한 연소가스 농도 측정 결과 분석)

  • Choi, Seung Il;Kang, Jung Ki;You, Woo Jun
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.83-88
    • /
    • 2019
  • This study examined the concentration of combustion gases while considering low ventilation and respiration frequency. A one-quarter-size ISO 9705 room corner test was performed. The concentrations of carbon monoxide and oxygen were measured in each case with the continuous inhalation of combustion gas with low ventilation (2, 6, and 10 LPM) and different respiration frequencies (2 s, 5 s, and infinity). The combustion of a gasoline pool fire in the compartment had a theoretical heat release rate of 5.34 kW. The results show that the deviation of the gas concentrations becomes higher as the low ventilation increases compared to the respiration frequency. In addition, as the respiration frequency increases, the variation in the minimum oxygen concentration is larger than the average value, while in the case of carbon monoxide, the variation in the average value is larger than the maximum value. These results show that the inhalation characteristics of refugees should be considered to investigate fires.