• Title/Summary/Keyword: Carbon Nanotube, CNT

Search Result 765, Processing Time 0.026 seconds

Investigation of Temperature Dependence for CNT Semiconductor in External Magnetic Field (외부 자기장내의 반도체 CNT의 온도의존 조사)

  • Park, Jung-Il;Lee, Haeng-Ki
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.3
    • /
    • pp.73-78
    • /
    • 2012
  • We calculated the electron spin resonance (ESR) line-profile function. The line-width of single-walled carbon nanotube (SWNT) was studied as a function of the temperature at a frequency of 9.5 GHz in the presence of external electromagnetic radiation. The temperature dependence of the line-widths is obtained with the projection operator method (POM) proposed by Argyres and Sigel. The scattering is little affected in the low-temperature region (T < 200 K). We conclude that the calculation process presented in this method is useful for optical transitions in SWNT.

Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment

  • Ebrahimi, Farzad;Habibi, Sajjad
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.69-97
    • /
    • 2017
  • In this study, nonlinear response of laminated functionally graded carbon nanotube reinforced composite (FG-CNTRC) plate under low-velocity impact based on the Eshelby-Mori-Tanaka approach in thermal conditions is studied. The governing equations are derived based on higher-order shear deformation plate theory (HSDT) under von $K\acute{a}rm\acute{a}n$ geometrical nonlinearity assumptions. The finite element method with 15 DOF at each node and Newmark's numerical integration method is applied to solve the governing equations. Four types of distributions of the uniaxially aligned reinforcement material through the thickness of the plates are considered. Material properties of the CNT and matrix are assumed to be temperature dependent. Contact force between the impactor and the laminated plate is obtained with the aid of the modified nonlinear Hertzian contact law models. In the numerical example, the effect of layup (stacking sequence) and lamination angle as well as the effect of temperature variations, distribution of CNTs, volume fraction of the CNTs, the mass and the velocity of the impactor in a constant energy level and boundary conditions on the impact response of the CNTRC laminated plates are investigated in details.

The critical buckling load of reinforced nanocomposite porous plates

  • Guessas, Habib;Zidour, Mohamed;Meradjah, Mustapha;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.115-123
    • /
    • 2018
  • By using the first order shear deformation plate theory (FSDT) in the present paper, the effect of porosity on the buckling behavior of carbon nanotube-reinforced composite porous plates has been investigated analytically. Two types of distributions of uniaxially aligned reinforcement material are utilized which uniformly (UD-CNT) and functionally graded (FG-CNT) of plates. The analytical equations of the model are derived and the exact solutions for critical buckling load of such type's plates are obtained. The convergence of the method is demonstrated and the present solutions are numerically validated by comparison with some available solutions in the literature. The central thesis studied and discussed in this paper is the Influence of Various parameters on the buckling of carbon nanotube-reinforced porous plate such as aspect ratios, volume fraction, types of reinforcement, the degree of porosity and plate thickness. On the question of porosity, this study found that there is a great influence of their variation on the critical buckling load. It is revealed that the critical buckling load decreases as increasing coefficients of porosity.

Free vibration of Cooper-Naghdi micro saturated porous sandwich cylindrical shells with reinforced CNT face sheets under magneto-hydro-thermo-mechanical loadings

  • Yazdani, Raziye;Mohammadimehr, Mehdi;Navi, Borhan Rousta
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.351-365
    • /
    • 2019
  • In this paper, free vibration of Cooper-Naghdi micro sandwich cylindrical shell with saturated porous core and reinforced carbon nanotube (CNT) piezoelectric composite face sheets is investigated by using first order shear deformation theory (FSDT) and modified couple stress theory (MCST). The sandwich shell is subjected to magneto-thermo-mechanical loadings with temperature dependent material properties. Energy method and Hamilton's principle are used for deriving of the motion equations. The equations are solved by Navier's method. The results are compared with the obtained results by the other literatures. The effects of various parameters such as saturated porous distribution, geometry parameters, volume fraction and temperature change on the natural frequency of the micro-sandwich cylindrical shell are addressed. The obtained results reveal that the natural frequency of the micro sandwich cylindrical shell increases with increasing of the radius to thickness ratio, Skempton coefficient, the porosity of the core, and decreasing of the length to radius ratio and temperature change.

Nonlinear vibration of FG-CNTRC curved pipes with temperature-dependent properties

  • Mingjie Liu;Shaoping Bi;Sicheng Shao;Hadi Babaei
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2023
  • In the current research, the nonlinear free vibrations of curved pipes made of functionally graded (FG) carbon nanotube reinforced composite (CNTRC) materials are investigated. It is assumed that the FG-CNTRC curved pipe is supported on a three-parameter nonlinear elastic foundation and is subjected to a uniform temperature rise. Properties of the curved nanocomposite pipe are distributed across the radius of the pipe and are given by means of a refined rule of mixtures approach. It is also assumed that all thermomechanical properties of the nanocomposite pipe are temperature-dependent. The governing equations of the curved pipe are obtained using a higher order shear deformation theory, where the traction free boundary conditions are satisfied on the top and bottom surfaces of the pipe. The von Kármán type of geometrical non-linearity is included into the formulation to consider the large deflection in the curved nanocomposite pipe. For the case of nanocomposite curved pipes which are simply supported in flexure and axially immovable, the motion equations are solved using the two-step perturbation technique. The closed-form expressions are provided to obtain the small- and large-amplitude frequencies of FG-CNTRC curved pipes rested on a nonlinear elastic foundation in thermal environment. Numerical results are given to explore the effects of CNT distribution pattern, the CNT volume fraction, thermal environment, nonlinear foundation stiffness, and geometrical parameters on the fundamental linear and nonlinear frequencies of the curved nanocomposite pipe.

Preparation and Physical Properties of Poly(ethylene-co-ethyl acrylate)/Carbon Nanotube Nanocomposites (폴리에틸렌에틸아크릴레이트/카본나노튜브 나노복합체의 제조 및 물성)

  • Kook, Jeong Ho;Jeong, Kwang-Un;Yang, Jong Seok;Park, Dae Hee;Go, Jin Hwan;Nah, Changwoon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.161-167
    • /
    • 2008
  • Multi-walled carbon nanotubes (MWCNT)-reinforced poly(ethylene-co-ethyl acrylate) (EEA) nanocomposites were prepared by both melt and solution mixing methods. The mechanical, thermal, and electrical properties were investigated as a function of type and loading of CNT. The tensile strength and modulus increased, while elongation at break decreased with increasing MWCNT content. The hollow-type MWCNT showed an improved tensile strength and elongation at break compared with a conventional MWCNT. The thermal degradation temperature was increased by around $40^{\circ}C$ with increasing the amount of MWCNT. The melt-mixed composites showed the highest volume resistivity. In the case of solution-mixed composites, the conventional MWCNT was estimated to show much lower volume resistivity than that of hollow MWCNT. The number and length of extruded CNT onto the fractured surface increased by both increasing the content of CNT and employing the tensile strain to the sample. The melt-mixed specimens showed much smaller number and shorter length of extruded CNT.

Morphology and Electrical Conductivity of Polystyrene/Carbon Nanotube Microcellular Foams Polymerized by High Internal Phase Emulsions (고내상 에멀젼 중합법으로 제조한 폴리스티렌/탄소나노튜브 미세기공 발포체의 모폴로지 및 전기 전도도)

  • Noh, Won-Jin;Kang, Myung-Hwan;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.579-585
    • /
    • 2012
  • Polystyrene/carbon nanotube (CNT) microcellular foams were prepared to have electrically conductive properties via high internal phase emulsion polymerization. In this study, we have investigated the effects of surface modification of CNT, surfactant content and dispersion time to improve the stability of emulsion and the electrical conductivity of foam. Acid treatment and a surfactant were used to effectively disperse CNTs in the aqueous phase. In the organic phase, CNTs were used after a surface modification with organic functional groups. The degree of dispersion of CNTs was estimated by the electrical conductivity of resultant microcellular foams. With raw CNTs dispersed with the surfactant in the aqueous phase, substantial conductivity increase was observed but the foams were slightly shrunk. The foams prepared with organically modified CNTs dispersed in the organic phase showed stable cell morphology without shrinkage, but displayed limitation to improve the conductivity.

Improved Properties of Li4Ti5O2 (LTO) by Surface Modification with Carbon Nanotube (CNT) (CNT 첨가를 통해 표면 처리한 LTO의 특성향상에 관한 연구)

  • Park, Soo-Gil;Kim, Cheong;Habazaki, Hiroki
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.2
    • /
    • pp.191-195
    • /
    • 2016
  • Among the lithium metal oxides for hybrid-capacity, $Li_4Ti_5O_{12}(LTO)$ is an emerging electrode material as zero-stain material in volume change during the with the charging and discharging processes. However, LTO has a limitation of low ionic and electronic conductivity. To enhance the ionic and electronic properties of $Li_4Ti_5O_{12}(LTO)$, we synthesized the spherical LTO/CNT composite by sol-gel process for hybrid capacitors. CNT interconnection networks between CNT-LTO particles enhanced electronic conductivity and electrochemical charging/discharging properties. All of the LTO samples was observed to show the spinel structure and spherical morphology with the diameter of $5{\sim}10{\mu}m$. Especially, spherical LTO/CNT composite of the CNT-3 wt% showed the enhanced capacity from 110 mAh/g to 140 mAh/g at 10 C.

Characteristics of Hybrid Protective Materials with CNT Sheet According to Binder Type

  • Jihyun Kwon;Euisang Yoo
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.197-204
    • /
    • 2022
  • Recently, the demand has increased for protective clothing materials capable of shielding the wearer from bullets, fragment bullets, knives, and swords. It is therefore necessary to develop light and soft protective clothing materials with excellent wearability and mobility. To this end, research is being conducted on hybrid design methods for various highly functional materials, such as carbon nanotube (CNT) sheets, which are well known for their low weight and excellent strength. In this study, a hybrid protective material using CNT sheets was developed and its performance was evaluated. The material design incorporated a bonding method that used a binder for interlayer combination between the CNT sheets. Four types of binders were selected according to their characteristics and impregnated within CNT sheets, followed by further combination with aramid fabric to produce the hybrid protective material. After applying the binder, the tensile strength increased significantly, especially with the phenoxy binder, which has rigid characteristics. However, as the molecular weight of the phenoxy binder increased, the adhesive force and strength decreased. On the other hand, when a 25% lightweight-design and high-molecular-weight phenoxy binder were applied, the backface signature (BFS) decreased by 6.2 mm. When the CNT sheet was placed in the middle of the aramid fabric, the BFS was the lowest. In a stab resistance test, the penetration depth was the largest when the CNT sheet was in the middle layer. As the binder was applied, the stab resistance improvement against the P1 blade was most effective.

Characteristics of Carbon Nanotube FED

  • Uemura, Sashiro;Yotani, Junko;Nagasako, Takeshi;Kurachi, Hiroyuki;Yamada, Hiromu;Ezaki, Tomotaka;Maesoba, Tsuyoshi;Nakao, Takehiro;Ito, Masaaki;Saito, Yahachi;Yumura, Motoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.860-865
    • /
    • 2004
  • Field emission display(FED) using carbon nanotubes (CNT) as field emitters is expected to large-area panels with high luminance and low power consumption. In order to perform the uniform luminance with low driving voltage, we introduced a new electrode to apply higher electric potential over the CNT cathode in 2003.[1] In the study, we described the luminance uniformity of the panel and the improvement of emission uniformity by increasing the emission-site density. The luminance uniformity of the several ideal dots which were selected over the display area in the panel was 2.8%. [2] The CNT cathode was irradiated by excimer-laser, which was effective to improve emission uniformity and lower driving voltage. A prototype of CNT-FED character display was performed for middle size message displays. The prototype panel had 48 x 480-dots and the resolution was 1-mm. The panel realized high luminance at low power consumption. It will be important characteristics for legible and ubiquitous displays. [3]

  • PDF