• Title/Summary/Keyword: Carbon Nanotube, CNT

Search Result 765, Processing Time 0.029 seconds

Fabrication of Triode Type Field Emission Device Using Carbon Nanotubes Synthesized by Thermal Chemical Vapor Deposition (열 화학 기상 증착법을 이용한 삼극관 구조의 탄소 나노 튜브 전계 방출 소자의 제조)

  • Yu W. J.;Cho Y. S.;Choi G. S.;Kim D. J.
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.542-546
    • /
    • 2004
  • We report a new fabrication process for high performance triode type CNT field emitters and their superior electrical properties. The CNT-based triode-type field emitter structure was fabricated by the conventional semiconductor processes. The keys of the fabrication process are spin-on-glass coating and trim-and-leveling of the carbon nanotubes grown in trench structures by employing a chemical mechanical polishing process. They lead to strong adhesion and a uniform distance from the carbon nanotube tips to the electrode. The measured emission property of the arrays showed a remarkably uniform and high current density. The gate leakage current could be remarkably reduced by coating of thin $SiO_{2}$ insulating layer over the gate metal. The field enhancement factor(${\beta}$) and emission area(${\alpha}$) were calculated from the F-N plot. This process can be applicable to fabrication of high power CNT vacuum transistors with good electrical performance.

A novel preparation and formation mechanism of carbon nanotubes aerogel

  • Li, Shaolong;He, Yan;Jing, Chengwei;Gong, Xiubin;Cui, Lianlei;Cheng, Zhongyue;Zhang, Chuanqi;Nan, Fei
    • Carbon letters
    • /
    • v.28
    • /
    • pp.16-23
    • /
    • 2018
  • A novel, unique, and effective method for carbon nanotube (CNT) dispersion by the free arc stimulation is proposed. CNTs are introduced as an aerogel into the air space via the dispersion method and can be utilized as a solution by adding it to solvents. The volume of the original generated CNT aerogel with a high-volume expansion ratio displays a performance two orders of magnitudes better than that of raw CNTs, which is considered a powerful characterization of the dispersion effect. The CNT aerogel, which was observed by scanning electron microscopy also showed a satisfactory dispersion morphology. Its structure and properties were tested before and after dispersion by Raman spectroscopy and great consistency was observed, which proved that the CNTs were undamaged. This approach may greatly promote the large-scale application of CNTs.

A Feasibility Study on Developing Snow Melting Systems using CNT-Cement Composite (도로 융설체 개발을 위한 탄소나노튜브-시멘트 복합체 특성에 관한 실험적 연구)

  • Heo, Jinnyung;Park, Bumjin;Kim, Taehyeong
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.29-37
    • /
    • 2013
  • PURPOSES : This study aims to review the possibility of developing a road snow-melting system that can prevent slip accidents by maintaining a constant temperature of the winter roads and enhance performance of structures, including improvement of compressive strength by mixing carbon nanotube (hereafter referred to as CNT) with cement paste, the basic material. METHODS : To achieve the above purpose, an experiment was conducted by mixing power-type CNT and wrap-type CNT up to cement paste formulation by weight of 0.0wt%~4.1wt% in accordance with "KS L ISO 679(of cement strength test method)", and compressive strength was measured at 28 days of curing. In addition, the volume resistivity of the specimen was measured to test thermal and electrical characteristics, and the rate of temperature changes in specimen surface by power consumption was measured by passing electricity through the cross-sections of the specimen. Meanwhile, the criteria for checking the performance as a road snow-melting system was determined as volume resistivity of $100{\Omega}{\cdot}cm$ or less. RESULTS : A comparative analysis between specimen with 0wt% CNT content in plain status and specimen containing various types of CNTs was carried out. From its results, it was found that compressive strength increased approximately 19%, showing the highest rate when 0.2wt% of wrap-type CNT was contained, but volume resistivity of $100{\Omega}{\cdot}cm$ or less appeared only in specimens containing more than 0.2wt% CNT. In addition, it was observed that the surface temperature increased by $4.62^{\circ}C$ per minute on average in specimens containing 3.2wt% CNT. CONCLUSIONS : In this study, CNT was examined as an underlying material for a road snow-melting system, and the possibility of developing the road now-melting system was reviewed by conducting various experiments using CNT-Cement composites. From the experimental results, the specimens were found to have a superior performance when compared to the existing road snow-melting systems that place the heat transfer medium such as copper on the road. However, satisfactory strength performance were not obtained from the specimen containing CNT(2.0% or more) that functions as a heating element, which leads to the need for reviewing methods to increase the strength by using plasticizer or admixture.

Electrical characteristics of 4H-SiC MIS Capacitors With Ni/CNT/SiO2 Structure (Ni/CNT/SiO2 구조의 4H-SiC MIS 캐패시터의 전기적 특성)

  • Lee, Taeseop;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.620-624
    • /
    • 2014
  • In this study, the electrical characteristics of Ni/CNT/$SiO_2$ structures were investigated in order to analyze the mechanism of carbon nanotubes in 4H-SiC MIS device structures. We fabricated 4H-SiC MIS capacitors with or without carbon nanotubes. Carbon nanotubes were dispersed by isopropyl alcohol. The capacitance-voltage (C-V) is characterized at 300 to 500K. The experimental flat-band voltage ($V_{FB}$) shift was positive. Near-interface trapped charge density and oxide trapped charge density values of Ni/CNT/$SiO_2$ structure were less than values of reference samples. With increasing temperature, the flat-band voltage was negative. It has been found that its oxide quality is related to charge carriers or defect states in the interface of 4H-SiC MIS capacitors. Gate characteristics of 4H-SiC MIS capacitors can be controlled by carbon nanotubes between Ni and $SiO_2$.

Mechanical, thermal and electrical properties of polymer nanocomposites reinforced with multi-walled carbon nanotubes (다층카본나노튜브가 보강된 고분자 나노복합체의 기계적, 열적, 전기적 특성)

  • Kook, J.H.;Huh, M.Y.;Yang, H.;Shin, D.H.;Park, D.H.;Nah, C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.215-216
    • /
    • 2007
  • Semiconducting layers are thin rubber film between electrical cable wire and insulating polymer layers having a volume resistivity of ${\sim}10^2{\Omega}cm$. A new semiconducting material was suggested in this study based on the carbon nanotube(CNT)-reinforced polymer nanocomposites. CNT-reinforced polymer nanocomposites were prepared by solution mixing with various polymer type and dual filler system. The mechanical, thermal and electrical properties were investigated as a function of polymer type and dual filler system based on CNT and carbon black. The volume resistivity of composites was strongly related with the crystallinity of polymer matrix. With decreased crystallinity, the volume resistivity decreased linearly until a critical point, and it remained constant with further decreasing the crystallinity. Dual filler system also affected the volume resistivity. The CNT-reinforced nanocomposite showed the lowest volume resistivity. When a small amount of carbon black(CB) was replaced the CNT, the crystallinity increased considerably leading to a higher volume resistivity.

  • PDF

Observation of CNT Stretching in homogeneously aligned nematic Liquid Crystal medium (수평 배향된 음의 액정에서의 CNT Stretching 관찰)

  • Kang, Byeong-Gyun;Jeon, Eun-Jeong;Lim, Young-Jin;Kim, Mi-Young;Lee, Kyu;Lee, Young-Hee;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.317-318
    • /
    • 2009
  • In this paper, we observed stretching of carbon nanotube (CNT) aggregates driven by the electric filed in a nematic liquid crystal (LC) medium. The CNT aggregates started to stretch above a threshold filed which is $1.5\;V/{\mu}m$ and the original CNT length which is $1.7{\mu}m$ was stretching up to $19.2\;{\mu}m$ at $3.5\;V/{\mu}m$ electric filed. When the CNT aggregates became to stretching, the width and length of CNT aggregates became narrow and long, respectively. The original morphology of the CNT aggregates was restored upon removal of filed.

  • PDF

DNA and DNA-CTMA composite thin films embedded with carboxyl group-modified multi-walled carbon nanotubes

  • Dugasani, Sreekantha Reddy;Gnapareddy, Bramaramba;Kesama, Mallikarjuna Reddy;Ha, Tai Hwan;Park, Sung Ha
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.79-86
    • /
    • 2018
  • Although the intrinsic characteristics of DNA molecules and carbon nanotubes (CNT) are well known, fabrication methods and physical characteristics of CNT-embedded DNA thin films are rarely investigated. We report the construction and characterization of carboxyl (-COOH) group-modified multi-walled carbon nanotube (MWCNT-COOH)-embedded DNA and cetyltrimethyl-ammonium chloride-modified DNA (DNA-CTMA) composite thin films. Here, we examine the structural, compositional, chemical, spectroscopic, and electrical characteristics of DNA and DNA-CTMA thin films consisting of various concentrations of MWCNT-COOH. The MWCNT-COOH-embedded DNA and DNA-CTMA composite thin films may offer a platform for developing novel optoelectronics, energy harvesting, and sensing applications in physical, chemical, and biological sciences.