• Title/Summary/Keyword: Carbon Nano-tube

Search Result 168, Processing Time 0.026 seconds

Optimization of SWCNT-Coated Fabric Sensors for Human Joint Motion Sensing

  • Cho, Hyun-Seung;Park, Seon-Hyung;Yang, Jin-Hee;Park, Su-Youn;Han, Bo-Ram;Kim, Jin-Sun;Lee, Hae-Dong;Lee, Kang-Hwi;Lee, Jeong-Whan;Kang, Bok-Ku;Chon, Chang-Soo;Kim, Han-Sung;Lee, Joo-Hyeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2059-2066
    • /
    • 2018
  • This study explored the feasibility of utilizing an SWCNT-coated fabric sensor for the development of a wearable motion sensing device. The extent of variation in electric resistance of the sensor material was evaluated by varying the fiber composition of the SWCNT-coated base fabrics, attachment methods, number of layers, and sensor width and length. 32 sensors were fabricated by employing different combinations of these variables. Using a custom-built experimental jig, the amount of voltage change in a fabric sensor as a function of the length was measured as the fabric sensors underwent loading-unloading test with induced strains of 30 %, 40 %, and 50 % at a frequency of 0.5 Hz. First-step analysis revealed the following: characteristics of the strain-voltage curves of the fabric sensors confirmed that 14 out of 32 sensors were evaluated as more suitable for measuring human joint movement, as they yield stable resistance values under tension-release conditions; furthermore, significantly stable resistance values were observed at each level of strain. Secondly, we analyzed the averaged maximum, minimum, and standard deviations at various strain levels. From this analysis, it was determined that the two-layer sensor structure and welding attachment method contributed to the improvement of sensing accuracy.

Sensitivity enhancement of H2 gas sensor using PbS quantum dots (황화납 양자점 감지막을 통해 감도가 개선된 수소센서)

  • Kim, Sae-Wan;Kim, Na-Ri;Kwon, Jin-Beom;Kim, Jae Keon;Jung, Dong Geon;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.388-393
    • /
    • 2020
  • In this study, a PbS quantum dots (QDs)-based H2 gas sensor with a Pd electrode was proposed. QDs have a size of several nanometers, and they can exhibit a high surface area when forming a thin film. In particular, the NH2 present in the ligand of PbS QDs and H2 gas are combined to form NH3+, subsequently the electrical characteristics of the QDs change. In addition to the resistance change owing to the reaction between Pd and H2 gas, the resistance change owing to the reaction between the NH2 of PbS QDs and H2 gas increases the current signal at the sensor output, which can produce a high output signal for the same concentration of H2 gas. Using the XRD and absorbance properties, the synthesis and particle size of the synthesized PbS QDs were analyzed. Using PbS QDs, the sensitivity was significantly improved by 44%. In addition, the proposed H2 gas sensor has high selectivity because it has low reactivity with heterogeneous gases such as C2H2, CO2, and CH4.

Study on Graphite/Polypropylene/Liquid Crystalline Polymer Composite for a Bipolar Plate of Polymer Electrolyte Membrane Fuel Cell (고분자 전해질막 수소 연료 전지 분리판 용 흑연/폴리프로필렌/액정고분자 복합 재료의 특성에 관한 연구)

  • Dhungana, Biraj;Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3627-3632
    • /
    • 2015
  • We investigated mechanical, rheological and electrical properties of graphite/PP/LCP composites for a bipolar plate of the polymer electrolyte membrane fuel cell. The composites containing very low molecular weighted PP showed much higher electrical conductivity compared with other thermoplastics. This was attributed to the enhanced dispersion of graphite particles due to the low viscosity of the PP. The conductivity of the composites was increased in a great extent by incorporation of small amount of carbon nano tube (CNT). However, the acid treated CNT which contains oxygen atoms did not increase the conductivity of the composite. From this result, it is concluded that the CNT has higher affinity with non polar polymer. The composite with low molecular weighted PP provided good processability so that the composites can be processed by an injection molding while the mechanical strength is deficient compared to other polymers. In order to reinforce the low mechanical property, LCP/PP was used as a binder and the graphite/PP/LCP composite showed the higher conductivity and moderate mechanical strength maintaining suitable processability.

Mechanical and Electrical Properties of Self-sensing Grout Material with a High-Volume Ultrafine Fly Ash Replacement (초고분말 플라이 애시를 다량 치환한 자기감지형 그라우트재의 역학적 및 전기적 특성)

  • Lee, Gun-Cheol;Kim, Young-Min;Im, Geon-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.215-226
    • /
    • 2024
  • This study presents an experimental investigation into the performance of self-sensing grout formulated with a high volume of ultra-fine fly ash(UHFA). To explore the potential benefits of alternative cementitious materials, the research examined the effect of substituting UHFA with equal parts of blast furnace slag(BFS) fine powder. Both UHFA and BFS are byproducts generated in significant quantities by industrial processes. The evaluation focused on the fresh properties of the grout, including its flow characteristics, as well as the hardened properties such as compressive strength, dimensional stability(length change rate), and electrical properties. The experimental results demonstrated that incorporating UHFA resulted in a substantial reduction in the plastic viscosity of the grout, translating to improved flowability. Additionally, the compressive strength of the UHFA-modified grout surpassed that of the reference grout(without UHFA substitution) at all curing ages investigated. Interestingly, the electrical characteristics, as indicated by the relationships between FCR-stress and FCR-strain, exhibited similar trends for both grout mixtures.

An Experimental Study for Electro-active Polymer Electrode and Actuator (전기활성 고분자 전극 및 구동기에 관한 실험적 연구)

  • Lee, Jun-Man;Ryu, Sang-Ryeoul;Lee, Dong-Joo;Lin, Zheng-Jie
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.289-294
    • /
    • 2013
  • A thinner is used to improve the multi-walled carbon nano-tube (CNT) and carbon black (CB) dispersion in a polymer matrix and to make a soft electrode. The electrical and mechanical properties of the soft electrodes are investigated as functions of CNT, CB and thinner content. The optimal mixing condition for the electrode is thinner 80, CNT 3.5, CB 18 (phr) on the basis of matrix (KE-12). The specific resistance of that is 73 (${\Omega}{\cdot}cm$), and tensile strength, tensile modulus, and elongation of that is 0.45 MPa, 0.21 MPa, and 184%, respectively. Also, a simple structure of the actuator with an optimized electrode and elastomer is fabricated and its characteristic is evaluated. At the operating voltage 25 kV, the displacement of an elastomer KE-12 is 2.24 mm, and that of an elastomer KE-12 with thinner 50 (phr) is 4.05 mm. It shows a higher displacement compared to that of 3M 4910 which has similar modulus. The actuator made with elastomer and electrode of the same material (KE-12) may have advantages for fatigue life and application.

Fabrication of carbon nano tube reinforced grass fiber composite and investigation of fracture surface of reinforced composites (CNT 첨가에 따른 유리섬유/섬유 복합재 제작 및 특성 평가)

  • Kim, Hyeongtae;Lee, Do-Hyeon;An, Woo-Jin;Oh, Chang-Hwan;Je, Yeonjin;Lee, Dong-Park;Cho, Kyuchul;Park, Jun Hong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.159-165
    • /
    • 2021
  • The fiber composites have been investigated as lightweight structure material platforms for aerospace applications because their strength can be enhanced by adding reinforcement without a significant increase in weight. In this study, the fabrication and characterization of carbon nanotube (CNT) reinforced glass fiber composites are demonstrated to enhance the tensile strength of longitudinal direction along the glass fibers. Due to the reinforcement of CNT in epoxy layers, the yield strength of fiber/epoxy composites is enhanced by about 10 %. Furthermore, using scanning electron microscopy, analysis of fracture surfaces shows that mixed CNT in epoxy layers acts as necking agents between fractured surfaces of fiber/epoxy; thereby, initiation and evolution of crack across fiber composite can be suppressed by CNT necking between fractured surfaces.

Evaluating Joint Motion Sensing Efficiency According to the Implementation Method of CNT-Based Fabric Sensors (CNT 기반의 직물센서 구현 방법에 따른 관절동작 센싱 효율 평가)

  • Cho, Hyun-Seung;Yang, Jin-Hee;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.24 no.4
    • /
    • pp.129-138
    • /
    • 2021
  • This study aimed to determine the effects of the shape and attachment position of stretchable textile sensors coated with carbon nanotube on their performance when used to measure children's joint movements. Moreover, the child-safe requirements for fabric motion sensors are established. The child participants were advised to wear integrated clothing equipped with the sensors of various shapes (rectangular and boat-shaped) and attachment positions (at the knee and elbow joints or 4 cm below the joints). The voltage change induced by the elongation and contraction of the fabric sensors was determined for arm and leg flexion-extension motions at 60 deg/s (three measurements of 10 repeats each for 60°and 90°angles, for a total of 60 repetitions). Their dependability was determined by comparing the fabric motion sensors to the associated acceleration sensors. The experimental results indicate that the rectangular-shaped sensor affixed 4 cm below the joint is the most effective fabric motion sensor for measuring children's arm and leg motions. In this study, we designed a textile sensor capable of tracking children's joint motion and analyzed the sensor shape and attachment position on motion sensing clothing. We demonstrated that flexible fabric sensors integrated into garments may be used to detect the joint motions of the human body.

Recent Progress in Air Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 (공기조화, 냉동 분야의 최근 연구 동향: 2006년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.427-446
    • /
    • 2008
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 has been accomplished. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro heat exchanger and siphon cooling device using nano-fluid. Traditional CFD and flow visualization methods were still popular and widely used in research and development. Studies about diffusers and compressors were performed in fluid machinery. Characteristics of flow and heat transfer and piping optimization were studied in piping systems. (2) The papers on heat transfer have been categorized into heat transfer characteristics, heat exchangers, heat pipes, and two-phase heat transfer. The topics on heat transfer characteristics in general include thermal transport in a cryo-chamber, a LCD panel, a dryer, and heat generating electronics. Heat exchangers investigated include pin-tube type, plate type, ventilation air-to-air type, and heat transfer enhancing tubes. The research on a reversible loop heat pipe, the influence of NCG charging mass on heat transport capacity, and the chilling start-up characteristics in a heat pipe were reported. In two-phase heat transfer area, the studies on frost growth, ice slurry formation and liquid spray cooling were presented. The studies on the boiling of R-290 and the application of carbon nanotubes to enhance boiling were noticeable in this research area. (3) Many studies on refrigeration and air conditioning systems were presented on the practical issues of the performance and reliability enhancement. The air conditioning system with multi indoor units caught attention in several research works. The issues on the refrigerant charge and the control algorithm were treated. The systems with alternative refrigerants were also studied. Carbon dioxide, hydrocarbons and their mixtures were considered and the heat transfer correlations were proposed. (4) Due to high oil prices, energy consumption have been attentioned in mechanical building systems. Research works have been reviewed in this field by grouping into the research on heat and cold sources, air conditioning and cleaning research, ventilation and fire research including tunnel ventilation, and piping system research. The papers involve the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies on indoor air quality took a great portion in the field of building environments. Various other subjects such as indoor thermal comfort were also investigated through computer simulation, case study, and field experiment. Studies on energy include not only optimization study and economic analysis of building equipments but also usability of renewable energy in geothermal and solar systems.