• Title/Summary/Keyword: Carbon Mixing

Search Result 696, Processing Time 0.051 seconds

Diagnosis of Water Environment and Assessment of Water Quality Restoration in Lake Shihwa (시화호의 수환경 진단과 수질회복 평가)

  • Kim, Dong-Seop;Go, Seok-Gu
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.551-559
    • /
    • 2000
  • In order to diagnose the water environment and assess the water quality restoration, long term trend of water environment has been surveyed at 3-R stations from 1994 to 1999 in Lake Shihwa. Annual mean values of $COD_{Mn}$, Chlorophyll a, total nitrogen, total phosphorus and Secchi depth are ranged in 5.2-15.1 mg/L, 7.3-14R.1 jlg/L, 1.50-4.84 mgN/L, 0.055-0.281 mgP/L and 0.5 -1.4 m, respectively, during the study periods. Carson's trophic state indeies were varied from mesotrophy in 1994 and 1995, hyper-eutrophy in 1996 and 1997, to meso eutrophy in 199R and 1999. After dike construction, water quality were rapidly deteriorated by allochthonous and autochthonous loading of high nutrients and organic carbon. Eutrophication phenomena were characterized by massive phytoplankton blooms and high concentration of COD. However, after onset of restoration program, lake water quality was rapidly restored to the level of just after sea-dike construction. The diversion of waste water inflowing from the Panwol and the Sihwa industrial districts which was started from March, 1997 has contributed to improve water quality in the surface layer. And the tidal mixing (sea water inflowing) through the continuous gate operation was the most effective measure to the whole lake restoration.ration.

  • PDF

Synthesis and Characterization of Li-Graphite intercalation Compounds (리튬-흑연 층간 화합물의 합성 및 특성)

  • Oh, Won-Chun;Kim, Myung-Kun;Ko, Young-Shin
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.315-320
    • /
    • 1994
  • Li-GICs as a high performance energy storager were synthesized as a function of the Li content by the admixture and add-pressure method. The characteristics of these prepared compounds have been determined from the studies by X-ray diffraction, UV-VIS spectrometry and CHN analysis. It follows from the results of X-ray diffraction that the lower-stage intercalation compounds are formed as the Li contents increase, however the mixed stages in these compounds are also observed. In the case of the $Li_{40wt%}$, the compound with the structure of stage 1 has been predominently, but the structure of only stage 1 is not obtained. The $d_{001}$ value of stage 1 was determined to be ca. $3.70{\AA}$. An analysis of spectrometric data shows that each of the compounds gives distingushible energy state spectra. It is seen from the spectra that the positions of $R_{min}$ values, with increase in the Li contents, are shifted in the region of higher energy state. Such a result can be attributed to the formation of stable stages. The results of CHN analysis allow us to find the mixing state related to chemical compositions of the intercalated compounds and the superiority to admixture and add-pressure method. From the results determined, it reveals that $Li_{10wt%}$-GIC and $Li_{20wt%}$-GIC can be utilized for an anode of rechargable battery.

  • PDF

Separation Characteristics of $CH_4/CO_2$ Mixed Gas by Polyamide Composite Membrane (Polyamide 복합막을 이용한 메탄/이산화탄소 혼합기체의 분리 특성)

  • Lee, Jae-Hwa;Lee, Geon-Ho;Choi, Kyung-Seok;Poudel, Jeeban;Kim, Soo-Ryong;Oh, Sea-Cheon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.478-485
    • /
    • 2012
  • Polymers are widely used as membrane material for performing the separation of various gaseous mixtures due to their attractive permselective properties and high processability. The separation characteristics of $CH_4$ and $CO_2$ mixed gas using polyamide composite membrane has been studied in this work. The sample gas was prepared by mixing pure methane and carbon dioxide. Permeation tests were carried out at different operation conditions. Feed flow rates were varied between 800~1000 $cm^3/min$, and the stage cuts were varied between 50~60%. The gas inlet pressure and the temperature were varied as 6 bar and $30{\sim}70^{\circ}C$, respectively. The effects of the above mentioned parameters were investigated to estimate the permeability of $CH_4$ and $CO_2$, and the selectivity of $CO_2$ was also calculated for all conditions. The Arrhenius plots were also performed to obtaine the activation energies of $CH_4$ and $CO_2$ permeabilities.

Evaluation of Hot Mix Asphalt Properties using Complex Modifiers (복합개질제를 이용한 아스팔트 혼합물의 물성 평가)

  • Lee, Kwan-Ho;Kim, Seong-Kyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.146-152
    • /
    • 2018
  • In this study, to improve the performance of asphalt mixtures for plastic deformation occurring mainly in Korea, complex modifiers were prepared by mixing powders and liquid type modifiers. The main constituents were powdery diatomaceous earth, mica and carbon black, and liquid type solid 70% SBR latex. The tensile strength ratios for the two asphalt mixtures used in the test were above 0.80 for the Ministry of Land Transportation (2017) asphalt mixture production and construction guidelines. The effects of increasing the tensile strength in the dry state was more than 14% when the composite modifier was added. The deformation rate per minute by the wheel tracking test load was an average of 0.07 to 0.147 for each mixture. The strain rate per minute was improved by the modifier, and the dynamic stability was improved by almost 100% from 295 to 590. In addition, the final settling was reduced from 11.38 mm to 9.57 mm. A plastic deformation test using the triaxial compression test showed that the amount of deformation entering the plastic deformation failure zone at the end of the second stage section and in the third stage plastic deformation section was 1.76 mm for the conventional mixture and 1.50 mm for the complex modifier mixture. The average slope of the complex modifier asphalt mixture mixed with the multi-functional modifier was 0.005 mm/sec. The plastic deformation rate is relatively small in the section where the road pavement exhibits stable common performance, i.e. the traffic load.

Optimum Chain Extension and Change of the Average Particle Size of Aqueous Polyurethane Dispersion (수분산 폴리우레탄 제조시 최적 사슬연장 조건과 입도 변화에 관한 연구)

  • Kong, H.C.;Jhon, Y.K.;Cheong, I.W.;Kim, J.H.
    • Journal of Adhesion and Interface
    • /
    • v.3 no.2
    • /
    • pp.9-16
    • /
    • 2002
  • In the synthesis of water-based polyurethane using self-emulsification process, after being neutralized, polyurethane pre-polymers containing ionic pendant groups are dispersed by simple convective mixing. Preparation of dispersion is followed by chain extension reaction, which is considered as important step for growth of the molecular weight of polyurethane. In this work, pH variations in the aqueous phase were monitored during the chain extension process in the presence of water-soluble diamines. The optimum degree of chain extension and the average particle size in the polyurethane dispersions were examined with varying ionic pendent group contents, type of chain extenders, and feed rate of chain extenders, The initial pH value in the aqueous phase linearly increased and the optimum chain extension point could be obtained from the intersection of two linear lines having different slopes, All average particle sizes before chain extension reaction were almost same, however, the final average particle size increased as feed rates of chain extenders increased, In addition, as the ionic pendant group contents increased, the particle size decreased since the hydrophilicity and hydrodynamic volume increased. As carbon numbers of the chain extenders increased, the final particle size increased significantly. From the results, it was concluded that the chain extension reaction took place among the particles not only in a particle.

  • PDF

Environmental Characteristics of the Seawater and Surface Sediment in the vicinity of Pusan Harbor Area in Winter (겨울철 부산항 주변해역의 수질과 표층퇴적물 환경특성)

  • PARK Young-Chul;YANG Han-Soeb;LEE Pil-Yong;KIM Pyoung-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.5
    • /
    • pp.577-588
    • /
    • 1995
  • The chemical constituents for the seawater and sediment were measured to evaluate pollution in the sea around Pusan Harbor in winter, n992. The average value of trophic state index (TSI) was 19.4 at the outside of Buk Harbor, 50,4 at the inside of Buk Harbor, 56,3 at the Nam Harbor and 5,0 at the Kamchun Harbor. The high correlation found in salinity-nutrients diagram with AOU suggested that the enrichment of nutrients in Pusan Harbor during winter was mainly due to the influx of terrestrial effluents and partially by regenerated nutrients from suspended organic matters in the water column. The mean values of total ignition loss (TIL), COD and total sulfide in the surface sediments were$12.1\%$, 17.5 mg/g.dry wt. and 1.18 mg/g.dry wt. respectively. The highest level of those parameters was shown mostly at the inside of Buk Harbor. The mean concentration of total organic carbon (TOC), total organic nitrogen (TON), and total phosphorus were 24.9 mg/g.dry wt., 1.3mg/g.dry wt. and 0.69 mg/g. dry wt., respectively, Both of the highest level for TOC and total phosphorus have found at the Nam Harbor. On the other hand, the Highest level for TON was found at the inside of Buk Harbor. The TOC/TON atomic ratio with a range of 10.2-60.2 (mean value of 22.5) strongly indicated the active role of the input from the terrestrial organic pollutants.

  • PDF

Optimum mixture ratio of functional Lindera glauca for culture of oyster mushroom (Pleurotus ostreatus) (느타리버섯 재배를 위한 기능성자원 감태나무(Lindera glauca) 톱밥의 적정 혼합비율)

  • Lee, Chan-Jung;Jhune, Chang-Sung;Cheong, Jong-Chun;Kong, Won-Sik;Park, Gi-Chun;Lee, Jeang-Hun;Shin, Yu-Su
    • Journal of Mushroom
    • /
    • v.10 no.1
    • /
    • pp.9-14
    • /
    • 2012
  • This study was carried out to investigated optimum mixing ratio of Korean natural Lindera glauca for production of functional oyster mushroom. Total nitrogen and carbon source of Lindera glauca was 0.16% and 40.9%, respectively and C/N ratio was 215. Total nitrogen source and pH of substrate mixed with Lindera glauca was 2.8~3.0 and 4.8~5.0, respectively. The contents of $P_2O_5$, CaO, MgO and $Na_2O$ were increased by increasing Lindera glauca, but there was no significant difference in $K_2O$ content. Mycerial growth was faster at Lindera glauca treatments than that of control. Yields of fruiting body was the highest at Lindera glauca 20%, and dimeter and thick of pileus were increased according to increase of Lindera glauca addition ratio. The L value of pileus was the highest at the Lindera glauca 10% during mushroom harvest, but there was no significant difference in the a-value and the b-value.

Structural and Electrochemical Properties of Li2Mn0.5Fe0.5SiO4/C Cathode Nanocomposite

  • Chung, Young-Min;Yu, Seung-Ho;Song, Min-Seob;Kim, Sung-Soo;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4205-4209
    • /
    • 2011
  • The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ silicate was prepared by blending of $Li_2MnSiO_4$ and $Li_2FeSiO_4$ precursors with same molar ratio. The one of the silicates of $Li_2FeSiO_4$ is known as high capacitive up to ~330 mAh/g due to 2 mole electron exchange, and the other of $Li_2FeSiO_4$ has identical structure with $Li_2MnSiO_4$ and shows stable cycle with less capacity of ~170 mAh/g. The major drawback of silicate family is low electronic conductivity (3 orders of magnitude lower than $LiFePO_4$). To overcome this disadvantage, carbon composite of the silicate compound was prepared by sucrose mixing with silicate precursors and heat-treated in reducing atmosphere. The crystal structure and physical morphology of $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ was investigated by X-ray diffraction, scanning electron microscopy, and high resolution transmission electron microscopy. The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$/C nanocomposite has a maximum discharge capacity of 200 mAh/g, and 63% of its discharge capacity is retained after the tenth cycles. We have realized that more than 1 mole of electrons are exchanged in $Li_2Mn_{0.5}Fe_{0.5}SiO_4$. We have observed that $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ is unstable structure upon first delithiation with structural collapse. High temperature cell performance result shows high capacity of discharge capacity (244 mAh/g) but it had poor capacity retention (50%) due to the accelerated structural degradation and related reaction.

A Study on the Effect of Surfactants in Acrylic Emulsion Polymerization (아크릴 에멀젼 중합에서의 계면활성제 영향에 관한 연구)

  • Song, Ju-Ho;Park, Sang-Joon;Park, Sang-Kwon;Lee, Myung-Cheon;Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.523-530
    • /
    • 1999
  • Acrylic pressure-sensitive adhesive has been made utilizing organic solvents, but nowadays it is made by solvent-free system due to environmental problems. In this study, emulsion polymerization were carried out at $40^{\circ}C$ with methacrylic acid(MAA), n-butyl acrylate(n-BA) and 2-ethylhexyl acrylate(2-EHA) as monomers in the presence of anionic(sodium dodecyl sulfate, SDS) and nonionic(ethylene oxide types) surfactant mixtures. The overall conversion of the polymerization reaction in a mixed surfactant system was found to be higher than that in a single surfactant system. Emulsion stability in mixed or anionic surfactant systems was found to be over 12 week, which was better than that in nonionic surfactant system. Emulsion particle size decreased as surfactant content increased. The Tg and molecular weight of emulsion polymer were inependent of the type, the amount and the mixing ratio of surfactant. Based on the results of stability and peel strength, the optimum nonionic surfactant ratio in total 4 g of surfactant mixture systems is found to be 40~60% by weight where the nonionic surfactant has 50 ethylene oxide groups and 16~18 carbon atoms in hydrophobic alkyl chain.

  • PDF

Purification of Biosynthesized Hyaluronic Acid for Its Medical Application (생합성 히아루론산의 의료용을 위한 정제)

  • 오덕근
    • KSBB Journal
    • /
    • v.11 no.1
    • /
    • pp.15-21
    • /
    • 1996
  • Purification of hyaluronic acid produced by Streptococcus equi was carried out to obtain clinical grade hyaluronic acid. The removal method of the bacteria was selected as filtration because filtration was the most effective method in removing impurities such as protein and nucleic acid of the fermentation broth. The removal efficiencies of protein and nucleic acid of hyaluronic acid solution were increased to 75% and 67%, respectively, by filtration with adding 0.6% of activatied carbon and 1.0% colite. Hyaluronic acid solution was precipitated by mixing with 2 volumes of ethanol. Effects of pH and conductivity on ethanol preciptation of hyaluronic acid were investigated. Protein and nucleic acid of hyaluronic acid were remained almost constant regardless of pH and conductivity, and the recovery of hyaluronic acid was optimum as about 85% at pH 7 and l00mS of conductivity Protein of hyaluronic acid was completly removed by three serial filtration and ethanol precipitation, however, nucleic acid was not removed. Hyaluronic acid solution was passed through a column of Duolite A7 to remove its nucleic acid, where 65% of nucleic acid was removed at pH 7 and 40mS of conductivity. The residual nucleic acid of hyaluronic acid solution was completly removed by treatment of 0.2% hydroxyapatite and the clinical grade hylauronic acid could be obtained.

  • PDF