• Title/Summary/Keyword: Carbon Emissions

Search Result 1,306, Processing Time 0.026 seconds

Evaluation of Indoor Air Quality in a Department of Radiation Oncology Located Underground (지하에 위치한 방사선종양학과에서의 실내공기 질 평가)

  • Kim, Won-Taek;Shin, Yong-Chul;Kang, Dong-Mug;Ki, Yong-Kan;Kim, Dong-Won;Kwon, Byung-Hyun
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.243-252
    • /
    • 2005
  • Purpose: Indoor air quality (IAQ) in the radiation treatment center which is generally located underground is important to the health of hospital workers and patients treated over a long period of time. this study was conducted to measure and analyze the factors related to IAQ and subjective symptoms of sick building syndrome, and to establish the causes influencing IAQ and find a solution to the problems. Methods and Materials : Self administrated questionnaire was conducted to check the workers' symptoms and understanding of the work environment. Based on a preliminary investigation, the factors related to IAQ such as temperature, humidity, fine particulate. carbon dioxide, carbon monoxide, formaldehyde, total volatile organic compounds (TVOC), and radon gas were selected and measured for a certain period of time in specific sites where hospital workers stay long in a day. And we also evaluated the surrounding environment and the efficiency of the ventilating system simultaneously, and measured the same factors at the first floor (outdoor) to compare with outdoor all quality, All collected data were assessed by the recommended standard for IAQ of the domestic and international environmental organizations. Results: Hospital workers were discontented with foul odors, humidity and particulate. They complained symptoms related to musculo-skeletal system, neurologic system, and mucosal-irritatation. Most of the factors were not greater than the recommended standard, but the level of TVOC was third or fourth times as much as the measuring level of some offices in the United States. The frequency and the amount of the ventilating system were adequate, however, the problem arising in the position of outdoor-air inlets and indoor-air outlets involved a risk of the indraft of contaminated air. A careful attention was a requirement in handling and keeping chemical substances including a developing solution which has a risk of TVOC emissions, and repositioning the ventilating system was needed to solve the contaminated-air circulation immediately Conclusion We verified that some IAQ-related factors and inadequate ventilating system could cause subjective symptoms in hospital workers. The evaluation of IAQ was surely needed to improve the underground working environments for hospital workers and patients. On the basis of these data, from now on, we should actively engage in designs of the department of radiation oncology or improvement in environments of the existing facilities.

Optimization for Ammonia Decomposition over Ruthenium Alumina Catalyst Coated on Metallic Monolith Using Response Surface Methodology (반응표면분석법을 이용한 루테늄 알루미나 메탈모노리스 코팅촉매의 암모니아 분해 최적화)

  • Choi, Jae Hyung;Lee, Sung-Chan;Lee, Junhyeok;Kim, Gyeong-Min;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.218-226
    • /
    • 2022
  • As a result of the recent social transformation towards a hydrogen economy and carbon-neutrality, the demands for hydrogen energy have been increasing rapidly worldwide. As such, eco-friendly hydrogen production technologies that do not produce carbon dioxide (CO2) emissions are being focused on. Among them, ammonia (NH3) is an economical hydrogen carrier that can easily produce hydrogen (H2). In this study, Ru/Al2O3 catalyst coated onmetallic monolith for hydrogen production from ammonia was prepared by a dip-coating method using a catalyst slurry mixture composed of Ru/Al2O3 catalyst, inorganic binder (alumina sol) and organic binder (methyl cellulose). At the optimized 1:1:0.1 weight ratio of catalyst/inorganic binder/organic binder, the amount of catalyst coated on the metallic monolith after one cycle coating was about 61.6 g L-1. The uniform thickness (about 42 ㎛) and crystal structure of the catalyst coated on the metallic monolith surface were confirmed through scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Also, a numerical optimization regression equation for NH3 conversion according to the independent variables of reaction temperature (400-600 ℃) and gas hourly space velocity (1,000-5,000 h-1) was calculated by response surface methodology (RSM). This model indicated a determination coefficient (R2) of 0.991 and had statistically significant predictors. This regression model could contribute to the commercial process design of hydrogen production by ammonia decomposition.

Evaluation of CH4 Flux for Continuous Observation from Intertidal Flat Sediments in the Eoeun-ri, Taean-gun on the Mid-western Coast of Korea (서해안 태안 어은리 갯벌의 연속관측 메탄(CH4) 플럭스 특성 평가)

  • Lee, Jun-Ho;Rho, Kyoung Chan;Woo, Han Jun;Kang, Jeongwon;Jeong, Kap-Sik;Jang, Seok
    • Economic and Environmental Geology
    • /
    • v.48 no.2
    • /
    • pp.147-160
    • /
    • 2015
  • In 2014, on 31 August and 1 September, the emissions of $CH_4$, $CO_2$, and $O_2$ gases were measured six times using the closed chamber method from exposed tidal flat sediments in the same position relative to the low point of the tidal cycle in the Eoeun-ri, Taean-gun, on the Mid-western Coast of Korea. The concentrations of $CH_4$ in the air sample collected in the chamber were measured using gas chromatography with an EG analyzer, model GS-23, within 6 hours of collection, and the other gases were measured in real time using a multi-gas monitor. The gas emission fluxes (source (+), and sink (-)) were calculated from a simple linear regression analysis of the changes in the concentrations over time. In order to see the surrounding parameters (water content, temperature, total organic carbon, average mean size of sediments, and the temperature of the inner chamber) were measured at the study site. On the first day, across three measurements during 5 hours 20 minutes, the observed $CO_2$ flux absorption was -137.00 to $-81.73mg/m^2/hr$, and the $O_2$ absorption, measured simultaneously, was -0.03 to $0.00mg/m^2/hr$. On the second day using an identical number of measurements, the $CO_2$ absorption was -20.43 to $-2.11mg/m^2/hr$, and the $O_2$ absorption -0.18 to $-0.14mg/m^2/hr$. The $CH_4$ absorption before low tide was $-0.02mg/m^2/hr$ (first day, Pearson correlation coefficient using the SPSS statistical analysis is -0.555(n=5, p=0.332, pronounced negative linear relationship)), and $-0.15mg/m^2/hr$ (second day, -0.915(n=5, p=0.030, strong negative linear relationship)) on both measurement days. The emitted flux after low tide on both measurement days reached a minimum of $+0.00mg/m^2/hr$ (+0.713(n=5, p=0.176, linear relationship which can be almost ignored)), and a maximum of $+0.03mg/m^2/hr$ (+0.194(n=5, p=0.754, weak positive linear relationship)) after low tide. However, the absolute values of the $CH_4$ fluxes were analyzed at different times. These results suggest that rate for $CH_4$ fluxes, even the same time and area, were influenced by changes in the tidal cycle characteristics of surface sediments for understanding their correlation with these gas emissions, and surrounding parameters such as physiochemical sediments conditions.

Detection of Potential Flow Paths of Leaked CO2 from Underground Storage Using Electrical Resistivity Survey (전기비저항탐사 방법에 의한 지중 저장 이산화탄소 누출 가능 경로 탐지)

  • Lim, Woo-Ri;Hamm, Se-Yeong;Hwang, Hak-Soo;Kim, Sung-Wook;Jeon, Hang-Tak
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.69-79
    • /
    • 2018
  • The Korean government attempts to reduce $CO_2$ emissions by 37% to 314.7 Mt $CO_2$, down from the estimated 850.6 Mt $CO_2$ until 2030 in order to confront green house effect. In this context, in 2014, Korean government launched $CO_2$ Storage Environmental Management Research (K-COSEM) Center for carrying out pilot-scale research on $CO_2$ leakage from underground $CO_2$ storage facilities. For the detection of $CO_2$ leakage, it is necessary to identify hydrologeological and geophysical characteristics of the subject area. In the study site of Naesan-ri, Daeso-myeon, Eumseong-gun, Chungbuk Province, two times injection tests (June 28-July 24, 2017 and August 07-September 11, 2017) of $CO_2$ and $SF_6$ dissolved waters, respectively, was conducted to understand the leakage behavior of $CO_2$ from underground. The injection well was drilled to a depth of 24 m with a 21-m casing and screen interval of 21~24 m depth. Two times resistivity surveys on August 18, 2017 and September 1, 2017, were conducted for revealing the flow of the injected water as well as the electrical properties of the study site. The study results have shown that the high-resistivity zone and the low-resistivity zone are clearly contrasted with each other and the flow direction of the injected water is similar to natural groundwater flow. Besides, the low resistivity zone is widely formed from the depth of injection to the shallow topsoil, indicating that the weathered zone of high permeability has high $CO_2$ leakage potential.

A Study on the Availability of Spatial and Statistical Data for Assessing CO2 Absorption Rate in Forests - A Case Study on Ansan-si - (산림의 CO2 흡수량 평가를 위한 통계 및 공간자료의 활용성 검토 - 안산시를 대상으로 -)

  • Kim, Sunghoon;Kim, Ilkwon;Jun, Baysok;Kwon, Hyuksoo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.2
    • /
    • pp.124-138
    • /
    • 2018
  • This research was conducted to examine the availability of spatial data for assessing absorption rates of $CO_2$ in the forest of Ansan-si and evaluate the validity of methods that analyze $CO_2$ absorption. To statistically assess the $CO_2$ absorption rates per year, the 1:5,000 Digital Forest-Map (Lim5000) and Standard Carbon Removal of Major Forest Species (SCRMF) methods were employed. Furthermore, Land Cover Map (LCM) was also used to verify $CO_2$ absorption rate availability per year. Great variations in $CO_2$ absorption rates occurred before and after the year 2010. This was due to improvement in precision and accuracy of the Forest Basic Statistics (FBS) in 2010, which resulted in rapid increase in growing stock. Thus, calibration of data prior to 2010 is necessary, based on recent FBS standards. Previous studies that employed Lim5000 and FBS (2015, 2010) did not take into account the $CO_2$ absorption rates of different tree species, and the combination of SCRMF and Lim5000 resulted in $CO_2$ absorption of 42,369 ton. In contrast to the combination of SCRMF and Lim5000, LCM and SCRMF resulted in $CO_2$ absorption of 40,696 ton. Homoscedasticity tests for Lim5000 and LCM resulted in p-value <0.01, with a difference in $CO_2$ absorption of 1,673 ton. Given that $CO_2$ absorption in forests is an important factor that reduces greenhouse gas emissions, the findings of this study should provide fundamental information for supporting a wide range of decision-making processes for land use and management.

Study of the corrosion effect of CO2 stream with SO2 and NO2 on a phosphate coated steel tube (SO2 및 NO2 포함 고압 CO2 스트림이 인산염 코팅 CO2 수송관 부식에 미치는 영향)

  • Cho, Meang-Ik;Kang, Seong-Gil;Huh, Cheol;Baek, Jong-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.6973-6979
    • /
    • 2014
  • To mitigate global warming and climate change, many countries are investing massively on the development of CCS technology, which is assumed to be the key technology to reduce $CO_2$ emissions. CCS technology is comprised of the capture, transport, and storage processes. During the capture process, impurities other than $CO_2$ are inevitably flowed into the $CO_2$ stream. In the present study, corrosion characteristics of a phosphate coated tube for $CO_2$ transportation was investigated with a $CO_2$ stream composed of $CO_2$, $H_2O$, $SO_2$, and $NO_2$. The test specimen was a phosphate coated steel tube, which was filled with $CO_2$ stream with the impurities mentioned above. SEM-EDS analysis is conducted to investigate the corrosion behavior. The results showed that although the H2O concentration did not exceed the solubility limit, corrosion occurred in the specimen, which has an inflow of $SO_2$ or $NO_2$. This suggests that the $SO_2$, $NO_2$ and $H_2O$ concentration should be strictly controlled. These results suggest that the $SO_2$ and $NO_2$ concentration should be controlled below 175ppm and 65ppm, respectively.

A Study on the Characteristics Measurement of Main Engine Exhaust Emission in Training Ship HANBADA (실습선 한바다호 주기관 배기가스 배출물질 특성 고찰에 관한 연구)

  • Choi, Jung-Sik;Lee, Sang-Deuk;Kim, Seong-Yun;Lee, Kyoung-Woo;Chun, Kang-Woo;Nam, Youn-Woo;Jung, Kyun-Sik;Park, Sang-Kyun;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.658-665
    • /
    • 2013
  • In this study, we measured particulate matter(PM) which emerged as the hot issue from the International Maritime Organization(IMO) and the exhaust emission using HANBADA, the training ship of Korea Maritime University. In particular, the PM was obtained with TEM grid. PM structure was observed by electron microscopy. And exhaust gases such as NOx, $CO_2$, and CO were measured using the combustion gas analyzer(PG-250A, HORIBA). The results of this study are as follows. 1) When the ship departed from the port, the maximum difference in PM emissions were up to 30 % due to the Bunker Change. 2) Under the steady navigation, emission of PM was $1.34mg/m^3$ when Bunker-A is changing L.R.F.O(3 %). And, at the fixed L.R.F.O (3 %), emission of PM was $1.19mg/m^3$. When the main engine RPM increased up to 20 % with fixed L.R.F.O(3 %), emission of PM was $1.40mg/m^3$. When we changed to low quality oil(L.R.F.O(3 %)), CO concentration from main engine increased about 16 %. On the other hand, when the main engine RPM is rising up to 20 %, CO concentration is increased more than 152 percent. These results imply that the changes of RPM is a dominant factor in exhaust emission although fuel oil type is an important factor. 3) The diameter of PM obtained with TEM grid is about $4{\sim}10{\mu}m$ and its structure shows porous aggregate.

Seismic Data Processing and Inversion for Characterization of CO2 Storage Prospect in Ulleung Basin, East Sea (동해 울릉분지 CO2 저장소 특성 분석을 위한 탄성파 자료처리 및 역산)

  • Lee, Ho Yong;Kim, Min Jun;Park, Myong-Ho
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.25-39
    • /
    • 2015
  • $CO_2$ geological storage plays an important role in reduction of greenhouse gas emissions, but there is a lack of research for CCS demonstration. To achieve the goal of CCS, storing $CO_2$ safely and permanently in underground geological formations, it is essential to understand the characteristics of them, such as total storage capacity, stability, etc. and establish an injection strategy. We perform the impedance inversion for the seismic data acquired from the Ulleung Basin in 2012. To review the possibility of $CO_2$ storage, we also construct porosity models and extract attributes of the prospects from the seismic data. To improve the quality of seismic data, amplitude preserved processing methods, SWD(Shallow Water Demultiple), SRME(Surface Related Multiple Elimination) and Radon Demultiple, are applied. Three well log data are also analysed, and the log correlations of each well are 0.648, 0.574 and 0.342, respectively. All wells are used in building the low-frequency model to generate more robust initial model. Simultaneous pre-stack inversion is performed on all of the 2D profiles and inverted P-impedance, S-impedance and Vp/Vs ratio are generated from the inversion process. With the porosity profiles generated from the seismic inversion process, the porous and non-porous zones can be identified for the purpose of the $CO_2$ sequestration initiative. More detailed characterization of the geological storage and the simulation of $CO_2$ migration might be an essential for the CCS demonstration.

Biorefinery Based on Weeds and Agricultural Residues (잡초 및 농림부산물을 이용한 Biorefinery 기술개발)

  • Hwang, In-Taek;Hwang, Jin-Soo;Lim, Hee-Kyung;Park, No-Joong
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.340-360
    • /
    • 2010
  • The depletion of fossil fuels, ecological problems associated with $CO_2$ emissions climate change, growing world population, and future energy supplies are forcing the development of alternative resources for energy (heat and electricity), transport fuels and chemicals: the replacement of fossil resources with $CO_2$ neutral biomass. Several options exist to cover energy supplies of the future, including solar, wind, and water power; however, chemical carbon source can get from biomass only. When used in combination with environmental friend production and processing technology, the use of biomass can be seen as a sustainable alternative to conventional chemical feedstocks. The biorefinery concept is analogous to today's petroleum refinery, which produce multiple fuels and chemical products from petroleum. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass. Biorefinery is the co-production of a spectrum of bio-based products (food, feed, materials, and chemicals) and energy (fuels, power, and heat) from biomass [definition IEA Bioenergy Task 42]. By producing multiple products, a biorefinery takes advantage of the various components in biomass and their intermediates therefore maximizing the value derived from the biomass feedstocks. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical or nutraceutical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol. Future biorefinery may play a major role in producing chemicals and materials as a bridge between agriculture and chemistry that are traditionally produced from petroleum. Industrial biotechnology is expected to significantly complement or replace the current petroleum-based industry and to play an important role.

Experimental Research on the Power Improvement by Increasing Intake pressure in a 1.4 L Turbocharged CNG Port Injection Spark Ignition Engine (1.4L 급 터보 CNG 엔진에서 흡기압력 상승에 따른 출력 증대 효과에 관한 연구)

  • Lee, Jeong-Woo;Park, Cheol-Woong;Bae, Jong-Won;Kim, Chang-Gi;Lee, Sun-Youp;Kim, Yong-Rae
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.90-96
    • /
    • 2019
  • Natural gas has been regarded as one of major alternative fuels, because of the increment of mining shale gas and supplying PNG(Pipeline Natural Gas) from Russia. Thus, it needs to broaden the usage of natural gas as the increasing its supplement. In this situation, application of natural gas on the transport area is a good suggestion to reduce exhaust emissions such as CO2(carbon dioxides) and soot from vehicles. For this reason, natural gas can be applied to SI(spark ignition) engines due to its anti-knocking and low auto-ignitibility characteristics. Recently, since turbocharged SI engine has been widely used, it needs to apply natural gas on the turbocharged SI engine. However, there is a major challenge for using natural gas on turbocharged SI engine, because it is hard to make natural gas direct injection in the cylinder, while gasoline is possible. As a result, there is a loss of fresh air when natural gas is injected by MPI (multi-point injection) method under the same intake pressure with gasoline-fueled condition. It brings the power reduction. Therefore, in this research, intake pressure was increased by controling the turbocharger system under natural gas-fueled condition to improve power output. The goal of improved power is the same level with that of gasoline-fueled condition under the maximum torque condition of each engine speed. As a result, the maximum power levels, which are the same with those of gasoline-fueled conditions, with improved brake thermal efficiency could be achieved for each engine speed (from 2,000 to 6,000 rpm) by increasing intake pressure 5-27 % compared to those of gasoline-fueled conditions.