Browse > Article
http://dx.doi.org/10.5660/KJWS.2010.30.4.340

Biorefinery Based on Weeds and Agricultural Residues  

Hwang, In-Taek (Biorefinery Research Center, Korea Research Institute of Chemical Technology)
Hwang, Jin-Soo (Biorefinery Research Center, Korea Research Institute of Chemical Technology)
Lim, Hee-Kyung (Biorefinery Research Center, Korea Research Institute of Chemical Technology)
Park, No-Joong (Biorefinery Research Center, Korea Research Institute of Chemical Technology)
Publication Information
Korean Journal of Weed Science / v.30, no.4, 2010 , pp. 340-360 More about this Journal
Abstract
The depletion of fossil fuels, ecological problems associated with $CO_2$ emissions climate change, growing world population, and future energy supplies are forcing the development of alternative resources for energy (heat and electricity), transport fuels and chemicals: the replacement of fossil resources with $CO_2$ neutral biomass. Several options exist to cover energy supplies of the future, including solar, wind, and water power; however, chemical carbon source can get from biomass only. When used in combination with environmental friend production and processing technology, the use of biomass can be seen as a sustainable alternative to conventional chemical feedstocks. The biorefinery concept is analogous to today's petroleum refinery, which produce multiple fuels and chemical products from petroleum. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass. Biorefinery is the co-production of a spectrum of bio-based products (food, feed, materials, and chemicals) and energy (fuels, power, and heat) from biomass [definition IEA Bioenergy Task 42]. By producing multiple products, a biorefinery takes advantage of the various components in biomass and their intermediates therefore maximizing the value derived from the biomass feedstocks. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical or nutraceutical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol. Future biorefinery may play a major role in producing chemicals and materials as a bridge between agriculture and chemistry that are traditionally produced from petroleum. Industrial biotechnology is expected to significantly complement or replace the current petroleum-based industry and to play an important role.
Keywords
bioenergy; biofuel; biomass; biorefinery; industrial biotechnology;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Sanders, J., E. Scott, R. Weusthuis and H. Mooibroek. 2007. Bio-Refinery as the bio-inspired process to bulk chemicals. Macromol. Biosci. 7: 105-117.   DOI
2 Sudesh, K., H. Abe and Y. Doi. 2000. Synthesis, structure and properties of polyhydroxyalkanoates : biological polyesters. Prog. Polym. Sci. 25: 1503-1555.   DOI
3 Tan S. S. Y., D. R. MacFarlane, J. Upfal, L. A. Edye, W. O. S. Doherty, A. F. Patti, J. M. Pringle and J. L. Scott. 2009. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem. 11:339-345.   DOI
4 The Council for Chemical Research, Technology vision 2020. 1996. The U.S. Chemical Industry.
5 US DOE 2006. Forest product industry technology roadmap.
6 Werpy, T., G. Petersen (eds.). 2004. Top value added chemicals from biomass (ed). U. S. Department of Energy, Office of scientific and technical information, 2004, No. : DOE/GO-102004-1992.
7 Woodward, J., M. Orr, K. Cordray and E. Greenbaum. 2000. Enzymatic production of biohydrogen. Nature 405:1014-1015.   DOI
8 Wright, M. M., and R. C. Brown. 2007. Comparative economics of biorefineries based on the biochemical and thermochemical platforms. Biofuels, Bioprod. Bioref. 1:49-56.   DOI
9 Yang, S. T. 2006. Bioprocessing for value-added products from renewable resources. Eds. Elsevier B.V., Amsterdam (Netherlands). p. 653.
10 ZakzeskiJ., P. C. A. Bruijnincx, A. L. Jongerius and B. M. Weckhuysen. 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110:3552-3599.   DOI   ScienceOn
11 Zhang, Y. H. P., and L. R. Lynd. 2005. Toward an aggregated understanding of enzymatic hydrolysis of cellulose : noncomplexed cellulase systems. Biotechnology and Bioengineering 88(7):797-824.
12 Jeffries, T. W. 1994. Biodegradation of lignin and hemicelluloses. C. Ratledge (ed.), Biochemistry of Microbial Degradation, 233-277. Kluwer Academic Publishers. Printed in the Netherlands.
13 Kamm, B., and M. Kamm 2004. Principles of biorefineries. Appl. Microbiol. Biotechnol. 64:137-145.   DOI
14 Klemm, D., B. Heublein , H. P. Fink and A Bohn. 2005. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44:3358-3393.   DOI
15 Li, C., B. Knierim, C. Manisseri, R. Arora, H. V. Scheller, M. Auer, K. P. Vogel, B. A. Simmons and S. Singh. 2010. Comparison of dilute acid and ionic liquid pretreatment of switchgrass : Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology 101 :4900-4906.   DOI
16 Mamman, A. S., Jong-Min Lee, Yeong-Cheol Kim, In Taek Hwang, No-Joong Park, Young Kyu Hwang, Jong-San Chang and Jin-Soo Hwang. 2008. Furfural : hemicellulose/xylosederived biochemical. Biofuels, Bioprod. Bioref., 2(5):438-454.   DOI
17 Sanders, J., E. Seott and H. Mooibroek. 2005. Biorefinery, the bridge between agriculture and chemistry. http ://www.biorefinery.nl/fileadmin/ biorefinery/docs/sanders_br_the_bridge_between_agriclthure_and_ chemistry.pdf.
18 Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple and M. Ladisch. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96:673-686.   DOI
19 Ni M., D. Y. C. Leung, M. K. H. Leung and K. Sumathy. 2006. An overview of hydrogen production from biomass. Fuel Processing Technology 87:461-472.   DOI   ScienceOn
20 Perez, J., J. Munz-Dorado, T. de la Rubia and J. Martinez. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin : an overview. Int. Microbiol. 5:53-63.   DOI   ScienceOn
21 한국석유화학공업협회. http://www.kpia.or.kr/
22 Bachmann M. 2007. Global chemicals-Yearly Update 2006, Cygnus Business Consulting & Research; Informa Economics. http : //www.marketresearch.com/search/
23 Burton, S. G., O. A. Cowan and J. M. Woodley 2002. The search for the ideal biocatalyst. Nature Biotechnology 20:37-45.   DOI
24 Clark, J. H., V. Budarin, F. E. I. Deswarte, J. J. E. Hardy, F. M. Ken on, A. J. Hunt, R. Luque, D. J. Macquarrie, K. Milkowski, A. Rodriguez, O. Samuel, S. J. Tavener, R. J. White and A. J. Wilson. 2006. Green chemistry and the biorefinery : a partnership for a sustainable future. Green Chem., 8:853-860.   DOI
25 Corma, A., S. Iborra and A. Velty. 2007. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107:2411-2502.   DOI
26 DOE USA : Department of Energy, USA Biomass Program, EERE. http : //wwwl.eere.energy.gov/biomass/biomass_basics.html.
27 Howard, R. L., Abotsi E., Jansen van Rensburg E. L., and Howard S. 2003. Lignocellulose biotechnology : issues of bioconversion and enzyme production. African J. of Biotechnology 2(12):602-619.   DOI
28 Fernando, S., S. Adhikari, C. Chandrapal and N. Murali. 2006. Biorefineries : current status, challenges, and future direction. Energy & Fuels 20:1727-1737.   DOI
29 Garcia, L., R. French, S. Czernik and E. Chomet. 2000. Catalytic Steam reforming of bio-oils for the production of hydrogen : effects of catalyst composition. Appl. Catal. A. 201:225-239.   DOI
30 Hammel, K. E.. 1997. Fungal degradation of lignin, driven by nature: Plant litter quality and decomposition (eds G. Cadisch and K. E. Giller). pp. 33-45.
31 Hwang, I. T., H. K. Lim, H. Y. Song, S. J. Cho, J. S. Chang and N. J Park. 2010. Cloning and characterization of a xylanase, KRICT PX1 from the strain Paenibacillus sp. HPL-001. Biotechnology Advances 28:594-601.   DOI
32 일본공업신문사. 2006. 월간 지구환경 9월호.
33 김기수. 2003. 셀룰로오스와 라이오셀(Lyocell) 섬유. KISTI 기술동향분석보고서, pp. 4-27.
34 석유화학공업협회. 2010. 홈페이지 http : //www.kpia.or.kr/index.htm
35 이선구, 박성훈. 2006. 산업 BT : 생물자원의 생물변환에 의한 연료, 화학원료 및 고분자의 생산. 한국화학공학회지 44(1):23-34.
36 정재훈, 권기석, 장한수. 2008. 수송용 바이오에너지 개발과 미래. 한국미생물생명공학회지 36(1):1-5.   과학기술학회마을
37 지식경제부. 2009. 바이오화학산업 발전전략 기획보고서. 350 p.
38 산업자원부, 2007. 산업바이오 활성화를 위한 전략기술 분석(보고서). 316 p.
39 한국화학연구원. 2007. "지속성장 화학기술 개발사업 핵심기술동향 분석", 기술검토보고서. 228 p.