• 제목/요약/키워드: Carbon Content Analysis

검색결과 561건 처리시간 0.025초

Effects of carbonization temperature on pore development in polyacrylonitrile-based activated carbon nanofibers

  • Lee, Hye-Min;An, Kay-Hyeok;Kim, Byung-Joo
    • Carbon letters
    • /
    • 제15권2호
    • /
    • pp.146-150
    • /
    • 2014
  • In this work, activated carbon nanofiber (ACNF) electrodes with high double-layer capacitance and good rate capability were prepared from polyacrylonitrile nanofibers by optimizing the carbonization temperature prior to $H_2O$ activation. The morphology of the ACNFs was observed by scanning electron microscopy. The elemental composition was determined by analysis of X-ray photoelectron spectroscopy. $N_2$-adsorption-isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller and Dubinin-Radushkevich equations. ACNFs processed at different carbonization temperatures were applied as electrodes for electrical double-layer capacitors. The experimental results showed that the surface morphology of the CNFs was not significantly changed after the carbonization process, although their diameters gradually decreased with increasing carbonization temperature. It was found that the carbon content in the CNFs could easily be tailored by controlling the carbonization temperature. The specific capacitance of the prepared ACNFs was enhanced by increasing the carbonization temperature.

오스테나이트계 Fe-18Cr-10Mn-2Ni 합금의 연성-취성 천이 거동에 미치는 침입형 원소의 영향 (Effect of Interstitial Elements on Ductile-Brittle Transition Behavior of Austenitic Fe-18Cr-10Mn-2Ni Alloys)

  • 황병철
    • 한국재료학회지
    • /
    • 제23권11호
    • /
    • pp.649-654
    • /
    • 2013
  • The effect of interstitial elements on the ductile-brittle transition behavior of austenitic Fe-18Cr-10Mn-2Ni alloys with different nitrogen and carbon contents was investigated in this study. All the alloys exhibited ductile-brittle transition behavior because of unusual low-temperature brittle fracture, even though they have a faced-centered cubic structure. With the same interstitial content, the combined addition of nitrogen and carbon, compared to the sole addition of nitrogen, improved the low-temperature toughness and thus decreased the ductile-brittle transition temperature (DBTT) because this combined addition effectively enhances the metallic component of the interatomic bonds and is accompanied by good plasticity and toughness due to the increased free electron concentration. The increase in carbon content or of the carbon-to-nitrogen ratio, however, could increase the DBTT since either of these causes the occurrence of intergranular fracture that lead to the deterioration of the toughness at low temperatures. The secondary ion mass spectroscopy analysis results for the observation of carbon and nitrogen distributions confirms that the carbon and nitrogen atoms were significantly segregated to the austenite grain boundaries and then caused grain boundary embrittlement. In order to successfully develop austenitic Fe-Cr-Mn alloys for low-temperature application, therefore, more systematic study is required to determine the optimum content and ratio of carbon and nitrogen in terms of free electron concentration and grain boundary embrittlement.

가속열화 실험에 의한 고분자 애자의 분해 (Degradation of Composite Insulator as Accelated Aging Test)

  • 이용희;장동욱;박영국;박정남;강성화;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.144-147
    • /
    • 2000
  • The effect of accelerated aging test on ethylene-propylene-diene monomer(EPDM) rubber used for outdoor insulation was studied by X-ray photoelectron spectroscopy(XPS), scanning electron microscope(SEM), FFT spectrum alalysis, and electrical pulse counts using PC by oscilloscope(300 MHz). In electrical alalysis, FFT spectrum analysis indicated arcing caused a significant increase in the third harmonic content of the leakage current of polluted insulator. Also, pulse counts increased as aging time. The surface oxygen and aluminum content were found to increase and that of carbon and nitrogen were found to decrease with time. The detailed XPS analysis indicated that the concentration of carbon in C-C decreased and concentration of highly oxidized carbons increased with time, which was due to the oxidation of EPDM rubber polymer SEM analysis indicated that crack and erosion of EPDM rubber occurred with time.

  • PDF

SiOC 박막의 화학적 특성과 전기적인 특성에 대한 차이점에 관한 연구 (Study on the Different Characteristic of Chemical and Electronic Properties)

  • 오데레사
    • 한국진공학회지
    • /
    • 제18권1호
    • /
    • pp.49-53
    • /
    • 2009
  • 층간 절연막으로써 연구되고 있는 SiOC 박막의 화학적 변화에 대하여 살펴보았다. SiOC 박막의 형성은 알킬기와 수산기에 의한 극성분자의 조합에 의해 무분극성의 박막을 형성할 수 있고 무분극성에 의한 비정질 구조를 형성함으로써 유전상수의 감소를 유도할수 있다. 박막의 화학적인 특성은 이온의 변화에 의한 결정구조의 변화로 결정할수 있고, 화학적인 변화의 분석은 FTIR에 의한 탄소함량변화로부터 무분극성의 영역을 유추해 내었다. 전기적인 특성은 박막 내에서의 전자의 특성을 알아보는 것으로써 화학적인 특성과 반드시 일치하는 것은 아니다 유량변화에 따른 SiOC 박막의 전기적인 특성을 분석함으로써 화학적 특성의 변화와 어느 정도 상관성이 있는지를 조사하였다. SiOC 박막은 열처리 후 대체로 누설전류가 증가하는 것으로 나타났고 특히 탄소의 함량이 급격히 증가하는 샘플이 존재하였다. 그러나 탄소의 함량이 증가하였으나 누설전류는 상대적으로 작게 나타나는 것으로 보아 화학적인 관점에서 탄소의 증가는 박막의 구조변화에 따른 효과로 직접 전류에 기여하지 않는다고 볼 수 있다.

비식생 갯벌의 블루카본 저장량 산정 및 영향인자 분석 (Calculation of Blue Carbon Stock and Analysis of Influencing Factors in Bare Tidal Flats)

  • 박경덕;강동환;조원기;소윤환;김병우
    • 한국환경과학회지
    • /
    • 제31권9호
    • /
    • pp.767-779
    • /
    • 2022
  • In this study, sediment cores were sampled from tidal flats (six sites) in the west and south coastal wetlands, the blue carbon stock in the tidal flat sediments was calculated, and the blue carbon stock characteristics and influencing factors were analyzed. The sediment particle size of the west coastal tidal flats was larger than that of the south coastal tidal flats, and the organic carbon content in the south coastal tidal flats was more than twice that of the west coastal tidal flats. Blue carbon stock per unit area was 28.4~36.8 Mg/ha on the west coastal tidal flats and 69.8~89.8 Mg/ha on the south coastal tidal flats, which was more than twice higher in the south coastal tidal flats than in the west coastal tidal flats. The total amount of blue carbon stock in the tidal flats was the highest in Suncheon Bay tidal flats at 153,626 Mg, and followed by Gomso Bay tidal flats at 141,750 Mg, Hampyeong Bay tidal flats at 58,420 Mg, Dongdae Bay tidal flats at 44,900 Mg, Cheonsu Bay tidal flats at 36,880 Mg, and Jinhae Bay tidal flats at 26,205 Mg. Blue carbon stock per unit area was higher in the south coastal tidal flats, but the total amount of blue carbon stock in the tidal flats was higher in the west coast. The slope of the regression function of blue carbon stock with respect to the organic carbon content in the tidal flat sediments was estimated to be about 0.05 to 0.07, and the slope of the regression function was higher in the west coastal tidal flats than in the south coastal tidal flats.

매립장 사후관리종료를 위한 유기물 함량비 산정방법 (An Estimation Method of Organic Matter Content Ratio for the Termination of Post-closure Maintenance of a Landfill)

  • 천승규
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제24권4호
    • /
    • pp.11-19
    • /
    • 2019
  • This paper examines an assessment method for terminating the post-closure maintenance of a landfill using a simplified landfill gas model. The case study site is the Sudokwon Landfill in Incheon city, which was closed in 2000. The deviations of the results obtained by the regular model and the simplified model were both slightly over 10% from the measured data. Also, the deviation of the simplified model from the regular model has been less than 5% since 2005. Thus, the simplified model could be applied to other landfills that have been closed for at least 5 years. Additionally, the results of the mass balance analysis using the simplified landfill gas model indicated that 39% of the organic carbon was discharged, leading to organic carbon and organic matter content of 7.2 and 17.6%, respectively, in the landfill by the end of 2018.

탄소나노튜브를 첨가한 나노 반도전층 재료의 기계적/열적 특성 변화 연구 (Mechanical and Thermal Properties Changes of Nano Semiconducting Materials due to Addition of Carbon Nanotubes)

  • 양종석;이경용;신동훈;최유진;박노준;박대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.28-29
    • /
    • 2006
  • To improve Mechanical and Thermal Properties of semiconducting materials in power cable, we have investigated those of semiconducting materials showed by changing the content of carbon black and Carbon Nanotube. Density were measured by EW-200SG. High temperature, heat degradation initiation temperature, and heat weight loss were measured by TGA (Thermogravimetric Analysis). The dimension of measurement temperature was $0[^{\circ}C]$ J to $700[^{\circ}C]$, and rising temperature was $10[^{\circ}C/min]$. Heat degradation initiation temperature from the TGA results was decreased according to increasing the content of Carbon Nanotube. That is, heat stabilities of EVA containing the weak VA (vinyl acetate) against heat was measured the lowest. From the results of the experiment applied in this study, it is evident that a small amount of Carbon nanotube additives significantly improved the Mechanical and Thermal Properties of semiconducting materials.

  • PDF

전자선 조사에 따른 탄소섬유 물성 변화 (Effect of Electron Beam Irradiation on the Properties of Carbon Fiber)

  • 전준표;신혜경;김현빈;강필현
    • 방사선산업학회지
    • /
    • 제4권3호
    • /
    • pp.259-263
    • /
    • 2010
  • Carbon fibers are used as a reinforcement material in an epoxy matrix in advanced composites due to their high mechanical strength, rigidity and low specific density. An important aspect of the mechanical properties of composites is associated to the adhesion between the surface of the carbon fiber and the epoxy matrix. This paper aimed to evaluate the effects of electron beam irradiation on the physicochemical properties of carbon fibers to obtain better adhesion properties in resultant composite. Chemical structure and surface elements of carbon fiber were determined by FT-IR, elemental analysis and X-ray photoelectron spectroscopy, which indicated that the oxygen content increased significantly with increasing the radiation dose. Thermal stability of the carbon fibers was studied via the thermalgravimetric analysis. Surface morphology of carbon fiber was analyzed by scanning electron microscope. It was found that the degree of surface roughness was increased by electron beam irradiation.

신경망을 이용한 열간 압연하중 예측용 탄소당량식의 개발 (Determination of Carbon Equivalent Equation by Using Neural Network for Roll Force Prediction in hot Strip Mill)

  • 김필호;문영훈;이준정
    • 소성∙가공
    • /
    • 제6권6호
    • /
    • pp.482-488
    • /
    • 1997
  • New carbon equivalent equation for the better prediction for the better prediction of roll force in a continuous hot strip mill has been formulated by applying a neural network method. In predicting roll force of steel strip, carbon equivalent equation which normalize the effects of various alloying elements by a carbon equivalent content is very critical for the accurate prediction of roll force. To overcome the complex relationships between alloying elements and operational variables such as temperature, strain, strain rate and so forth, a neural network method which is effective for multi-variable analysis was adopted in the present work as a tool to determine a proper carbon equivalent equation. The application of newly formulated carbon equivalent equation has increased prediction accuracy of roll force significantly and the effectiveness of neural network method is well confirmed in this study.

  • PDF

FeCrMnN 계 스테인리스강의 일반부식 및 공식부식 거동에 미치는 고용 탄소의 영향 (Effects of Alloyed Carbon on the General Corrosion and the Pitting Corrosion Behavior of FeCrMnN Stainless Steels)

  • 하헌영;이태호;김성준
    • 대한금속재료학회지
    • /
    • 제49권10호
    • /
    • pp.780-789
    • /
    • 2011
  • The effects of alloyed carbon on the pitting corrosion, the general corrosion, and the passivity behavior of Fe18Cr10Mn0.4NxC (x=0~0.38 wt%) alloys were investigated by various electrochemical methods and XPS analysis. The alloyed carbon increased the general corrosion resistance of the FeCrMnN matrix. Carbon enhanced the corrosion potential, reduced the metal dissolution rate, and accelerated the hydrogen evolution reaction rate in various acidic solutions. In addition, carbon promoted the pitting corrosion resistance of the matrix in a chloride solution. The alloyed carbon in the matrix increased the chromium content in the passive film, and thus the passive film became more protective.