Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.10.780

Effects of Alloyed Carbon on the General Corrosion and the Pitting Corrosion Behavior of FeCrMnN Stainless Steels  

Ha, Heon-Young (Korea Institute of Materials Science)
Lee, Tae-Ho (Korea Institute of Materials Science)
Kim, Sung-Joon (Korea Institute of Materials Science)
Publication Information
Korean Journal of Metals and Materials / v.49, no.10, 2011 , pp. 780-789 More about this Journal
Abstract
The effects of alloyed carbon on the pitting corrosion, the general corrosion, and the passivity behavior of Fe18Cr10Mn0.4NxC (x=0~0.38 wt%) alloys were investigated by various electrochemical methods and XPS analysis. The alloyed carbon increased the general corrosion resistance of the FeCrMnN matrix. Carbon enhanced the corrosion potential, reduced the metal dissolution rate, and accelerated the hydrogen evolution reaction rate in various acidic solutions. In addition, carbon promoted the pitting corrosion resistance of the matrix in a chloride solution. The alloyed carbon in the matrix increased the chromium content in the passive film, and thus the passive film became more protective.
Keywords
metals; annealing; corrosion; SEM scanning electronmicros-copy; carbon;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 U. Kamachi Mudali and B. Raj, High Nitrogen Steels and Stainless Steels, p.1-9, ASM Internatioal, Narosa Publishing House, New Delhi (2004).
2 M.O. Speidel, Mat.-wiss. u. Werkstofftech 37, 875 (2006).   DOI   ScienceOn
3 H. Berns, ISIJ Inter. 36, 909 (1996).   DOI   ScienceOn
4 U. Kamachi Mudali, Mater Manuf. Process 19, 1 (2004).   DOI   ScienceOn
5 T. Oshima, Y. Habara, and K. Kuroda, ISIJ Inter. 47, 359 (2007).   DOI   ScienceOn
6 T.H. Lee and S.J. Kim, J. Kor. Inst. Mat. & Mater. 35, 1146 (1997).
7 H.J. Grabke, ISIJ Inter. 36, 777 (1996).   DOI   ScienceOn
8 P.R. Levey and A. van Bennekom, Corrosion 51, 911 (1995).   DOI
9 R.F.A. Jargelius-Pettersson, Corros. Sci. 30, 1639 (1999).
10 H.J. Bang, T.H. Lee. C.S. Oh, and I.M. Park, J. Kor. Inst. Met. & Mater. 45, 269 (2007).
11 V.G. Gavriljuk and H. Berns, High Nitrogen Steels, p.14-33, Springer-Verlag, Berlin Heidelberg (1999).
12 H. Berns, V.G. Gavriljuk, S. Reidner, and A. Tyshchenko, Steel Research Int. 78, 714 (2007).   DOI
13 V.G. Gavriljuk, O. Razumov, Y. Petrov, I. Surzhenko, and H. Berns, Steel Research Int. 78, 720 (2007).   DOI
14 M.O. Speidel, Proc. High Nitrogen Steels 2003 (eds. M.O. Speidel, C. Kowanda, M. Diener) p.1, Institute of Metallurgy, Schaffhausen, Switzerland (2003).
15 M.O. Speidel, Proc. High Nitrogen Steels 2003 (eds. M.O. Speidel, C. Kowanda, M. Diener) p.159, Institute of Metallurgy, Schaffhausen, Switzerland (2003).
16 V.G. Gavriljuk, B.D. Shanina, and H. Berns, Acta Mater. 56, 5071 (2008).   DOI   ScienceOn
17 Urs.I. Thomann and P.J. Uggowitzer, Wear 239, 48 (2000).   DOI   ScienceOn
18 E. Grigore, C. Ruset, X. Li, and H. Dong, Mater. Manuf. Process. 25, 341 (2010).   DOI   ScienceOn
19 Y. Sun and E. Haruman, Vacuum 81, 114 (2006).   DOI   ScienceOn
20 H.-Y. Ha, T.-H. Lee, C.-S. Oh, and S.-J. Kim, Scripta Mater. 61, 121 (2009).   DOI   ScienceOn
21 C.M.A. Brett and A.M.O. Brett, Electrochemistry, p.174- 198, Oxford University Press, Oxford (1993).
22 R. Babic, M. Metikos-Hukovic, and Z. Pilic, Corrosion 59, 890 (2003).   DOI   ScienceOn
23 T. Piao and S.-M. Park, J. Electrochem. Soc. 144, 3371 (1997).   DOI   ScienceOn
24 J.H. Gerretsen and J.H.W. de Wit, Corros. Sci. 31, 545 (1990).   DOI
25 T.L. Sudesh, L. Wijesinghe, and D.J Blackwood, Corros. Sci. 50, 23 (2008).   DOI   ScienceOn
26 M. Abdallah, Mater. Chem. Phys. 82, 786 (2003).   DOI   ScienceOn
27 L. Veleva, M.A. Alpuche-Aviles, M.K. Graves-Brook, and D.O. Wipf, J. Electroanal. Chem. 537, 85 (2002).   DOI   ScienceOn
28 S. C. Tjong, Surf. Coat. Tech. 38, 325 (1989).   DOI   ScienceOn
29 B. Liu and Y.F. Zheng, Acta Biomaterialia 7, 1409 (2011).
30 V.G. Gavriljuk, B.D. Shanina, and H. Berns, Mat. Sci. Eng. A-Struct 481-482, 707 (2008).   DOI
31 S.C. Tjong, Appl. Surf. Sci. 44, 7 (1990).   DOI   ScienceOn
32 S.C. Tjong, Appl. Surf. Sci. 45, 301 (1990).   DOI   ScienceOn
33 I.M. Wolff, L.E. Iorio, T. Rumpf, P.V.T. Scheers, and J.H. Potgieter, Mat. Sci. Eng. A-Struct A241, 264 (1998).
34 El-S.M. Sherif, J.H. Potgieter, J.D. Comins, L. Cornish, P.A. Olubambi, and C.N. Machio, Corros. Sci. 51, 1364 (2009).   DOI   ScienceOn
35 R. Ummethala, F. Despang, M. Gelinsky, and B. Basu, Electrochim. Acta. 56, 3809 (2011).   DOI   ScienceOn
36 F. Rosalbino, D. Maccio, E. Angelini, A. Saccone, and S. Delfino, J. Alloys. Compd. 403, 275 (2005).   DOI   ScienceOn
37 A.J. Bard and L.R. Faulkner, Electrochemical Methods, 2nd ed., p.87-136, John Wiley & Sons, New York (2001).
38 R. Babic, M. Metikos-Hukovic, and Z. Pillic, Corrosion 59, 890 (2003).   DOI   ScienceOn
39 M. Nagayama and M. Cohen, J. Electrochem. Soc. 143, 781 (1962).
40 L.J. Oblonsky, A.J. Davenport, M.P. Ryan, H.S. Isaacs, and R.C. Newman, J. Electrochem. Soc. 144, 2398 (1997).   DOI   ScienceOn
41 M. Detroye, F. Reniers, C. Buess-Herman, and J. Bereechen, Appl. Surf. Sci. 144-145, 78 (1999).   DOI
42 B. Wu, G. Lin, Y. Fu, M. Hou, and B. Yi, Int. J. Hydrogen Energ. 35, 13255 (2010).   DOI   ScienceOn
43 P. Ghods, O.B. Isgor, J.R. Brown, F. Bensebaa, and D. Kingston, Appl. Surf. Sci. 257, 4669 (2011).   DOI   ScienceOn