DOI QR코드

DOI QR Code

Effects of Alloyed Carbon on the General Corrosion and the Pitting Corrosion Behavior of FeCrMnN Stainless Steels

FeCrMnN 계 스테인리스강의 일반부식 및 공식부식 거동에 미치는 고용 탄소의 영향

  • 하헌영 (한국기계연구원 부설 재료연구소) ;
  • 이태호 (한국기계연구원 부설 재료연구소) ;
  • 김성준 (한국기계연구원 부설 재료연구소)
  • Received : 2011.06.23
  • Published : 2011.10.25

Abstract

The effects of alloyed carbon on the pitting corrosion, the general corrosion, and the passivity behavior of Fe18Cr10Mn0.4NxC (x=0~0.38 wt%) alloys were investigated by various electrochemical methods and XPS analysis. The alloyed carbon increased the general corrosion resistance of the FeCrMnN matrix. Carbon enhanced the corrosion potential, reduced the metal dissolution rate, and accelerated the hydrogen evolution reaction rate in various acidic solutions. In addition, carbon promoted the pitting corrosion resistance of the matrix in a chloride solution. The alloyed carbon in the matrix increased the chromium content in the passive film, and thus the passive film became more protective.

Keywords

References

  1. U. Kamachi Mudali and B. Raj, High Nitrogen Steels and Stainless Steels, p.1-9, ASM Internatioal, Narosa Publishing House, New Delhi (2004).
  2. M.O. Speidel, Mat.-wiss. u. Werkstofftech 37, 875 (2006). https://doi.org/10.1002/mawe.200600068
  3. H. Berns, ISIJ Inter. 36, 909 (1996). https://doi.org/10.2355/isijinternational.36.909
  4. U. Kamachi Mudali, Mater Manuf. Process 19, 1 (2004). https://doi.org/10.1081/AMP-120027493
  5. T. Oshima, Y. Habara, and K. Kuroda, ISIJ Inter. 47, 359 (2007). https://doi.org/10.2355/isijinternational.47.359
  6. T.H. Lee and S.J. Kim, J. Kor. Inst. Mat. & Mater. 35, 1146 (1997).
  7. H.J. Grabke, ISIJ Inter. 36, 777 (1996). https://doi.org/10.2355/isijinternational.36.777
  8. P.R. Levey and A. van Bennekom, Corrosion 51, 911 (1995). https://doi.org/10.5006/1.3293567
  9. R.F.A. Jargelius-Pettersson, Corros. Sci. 30, 1639 (1999).
  10. H.J. Bang, T.H. Lee. C.S. Oh, and I.M. Park, J. Kor. Inst. Met. & Mater. 45, 269 (2007).
  11. V.G. Gavriljuk and H. Berns, High Nitrogen Steels, p.14-33, Springer-Verlag, Berlin Heidelberg (1999).
  12. H. Berns, V.G. Gavriljuk, S. Reidner, and A. Tyshchenko, Steel Research Int. 78, 714 (2007). https://doi.org/10.1002/srin.200706274
  13. V.G. Gavriljuk, O. Razumov, Y. Petrov, I. Surzhenko, and H. Berns, Steel Research Int. 78, 720 (2007). https://doi.org/10.1002/srin.200706275
  14. M.O. Speidel, Proc. High Nitrogen Steels 2003 (eds. M.O. Speidel, C. Kowanda, M. Diener) p.1, Institute of Metallurgy, Schaffhausen, Switzerland (2003).
  15. M.O. Speidel, Proc. High Nitrogen Steels 2003 (eds. M.O. Speidel, C. Kowanda, M. Diener) p.159, Institute of Metallurgy, Schaffhausen, Switzerland (2003).
  16. V.G. Gavriljuk, B.D. Shanina, and H. Berns, Acta Mater. 56, 5071 (2008). https://doi.org/10.1016/j.actamat.2008.06.021
  17. Urs.I. Thomann and P.J. Uggowitzer, Wear 239, 48 (2000). https://doi.org/10.1016/S0043-1648(99)00372-5
  18. E. Grigore, C. Ruset, X. Li, and H. Dong, Mater. Manuf. Process. 25, 341 (2010). https://doi.org/10.1080/10426911003748426
  19. Y. Sun and E. Haruman, Vacuum 81, 114 (2006). https://doi.org/10.1016/j.vacuum.2006.03.003
  20. H.-Y. Ha, T.-H. Lee, C.-S. Oh, and S.-J. Kim, Scripta Mater. 61, 121 (2009). https://doi.org/10.1016/j.scriptamat.2009.03.018
  21. C.M.A. Brett and A.M.O. Brett, Electrochemistry, p.174- 198, Oxford University Press, Oxford (1993).
  22. R. Babic, M. Metikos-Hukovic, and Z. Pilic, Corrosion 59, 890 (2003). https://doi.org/10.5006/1.3287710
  23. T. Piao and S.-M. Park, J. Electrochem. Soc. 144, 3371 (1997). https://doi.org/10.1149/1.1838021
  24. J.H. Gerretsen and J.H.W. de Wit, Corros. Sci. 31, 545 (1990). https://doi.org/10.1016/0010-938X(90)90160-7
  25. T.L. Sudesh, L. Wijesinghe, and D.J Blackwood, Corros. Sci. 50, 23 (2008). https://doi.org/10.1016/j.corsci.2007.06.009
  26. M. Abdallah, Mater. Chem. Phys. 82, 786 (2003). https://doi.org/10.1016/S0254-0584(03)00367-5
  27. L. Veleva, M.A. Alpuche-Aviles, M.K. Graves-Brook, and D.O. Wipf, J. Electroanal. Chem. 537, 85 (2002). https://doi.org/10.1016/S0022-0728(02)01253-6
  28. B. Liu and Y.F. Zheng, Acta Biomaterialia 7, 1409 (2011).
  29. V.G. Gavriljuk, B.D. Shanina, and H. Berns, Mat. Sci. Eng. A-Struct 481-482, 707 (2008). https://doi.org/10.1016/j.msea.2006.11.186
  30. S. C. Tjong, Surf. Coat. Tech. 38, 325 (1989). https://doi.org/10.1016/0257-8972(89)90094-7
  31. S.C. Tjong, Appl. Surf. Sci. 44, 7 (1990). https://doi.org/10.1016/0169-4332(90)90070-G
  32. S.C. Tjong, Appl. Surf. Sci. 45, 301 (1990). https://doi.org/10.1016/0169-4332(90)90040-7
  33. I.M. Wolff, L.E. Iorio, T. Rumpf, P.V.T. Scheers, and J.H. Potgieter, Mat. Sci. Eng. A-Struct A241, 264 (1998).
  34. El-S.M. Sherif, J.H. Potgieter, J.D. Comins, L. Cornish, P.A. Olubambi, and C.N. Machio, Corros. Sci. 51, 1364 (2009). https://doi.org/10.1016/j.corsci.2009.03.022
  35. R. Ummethala, F. Despang, M. Gelinsky, and B. Basu, Electrochim. Acta. 56, 3809 (2011). https://doi.org/10.1016/j.electacta.2011.02.045
  36. F. Rosalbino, D. Maccio, E. Angelini, A. Saccone, and S. Delfino, J. Alloys. Compd. 403, 275 (2005). https://doi.org/10.1016/j.jallcom.2005.03.075
  37. A.J. Bard and L.R. Faulkner, Electrochemical Methods, 2nd ed., p.87-136, John Wiley & Sons, New York (2001).
  38. R. Babic, M. Metikos-Hukovic, and Z. Pillic, Corrosion 59, 890 (2003). https://doi.org/10.5006/1.3287710
  39. M. Nagayama and M. Cohen, J. Electrochem. Soc. 143, 781 (1962).
  40. L.J. Oblonsky, A.J. Davenport, M.P. Ryan, H.S. Isaacs, and R.C. Newman, J. Electrochem. Soc. 144, 2398 (1997). https://doi.org/10.1149/1.1837826
  41. B. Wu, G. Lin, Y. Fu, M. Hou, and B. Yi, Int. J. Hydrogen Energ. 35, 13255 (2010). https://doi.org/10.1016/j.ijhydene.2010.09.036
  42. P. Ghods, O.B. Isgor, J.R. Brown, F. Bensebaa, and D. Kingston, Appl. Surf. Sci. 257, 4669 (2011). https://doi.org/10.1016/j.apsusc.2010.12.120
  43. M. Detroye, F. Reniers, C. Buess-Herman, and J. Bereechen, Appl. Surf. Sci. 144-145, 78 (1999). https://doi.org/10.1016/S0169-4332(98)00769-7