• Title/Summary/Keyword: Carbon Char Yield

Search Result 30, Processing Time 0.024 seconds

Flame Retardant and Thermal Properties of Wood-based Composite Boards Prepared by Graphene Nanoplatelet/Reused Phenolic Foam (그래핀나노플레이트렛 및 재활용 페놀폼으로 제조된 목재기반 복합보드의 난연 및 열적 특성)

  • Han, Jeong-In;Kim, Min-Ji;Song, Eun Ji;Kim, Kyung Hoon;In, Se-Jin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.371-378
    • /
    • 2019
  • Graphene nanoplatelet (GnP)/reused phenolic foam (re-PF)/wood composite boards were fabricated with different GnP content as 5, 10 and 20 w/w% to investigate the effect of GnP on thermal- and flame retardant properties of wood-based composite boards. The thermal- and flame retardant properties of fabricated composite boards were investigated by thermogravimetric analysis (TGA) and limiting oxygen index (LOI), respectively. The thermal stability of the composite boards increased proportionally with respect to the amount of GnP, and the char yield of these boards increased up to 22% compared to that of the pure wood board. The LOI values of composite boards were about 4.8~7.8% higher than those of using pure wood boards. It was also confirmed that the flame retardant properties of composite boards were remarkably improved by the addition of re-PF and GnP. These results were because of the fact that the re-PF and GnP with a high thermal stability delayed the initial thermal degradation temperature of composite boards and made their char layers denser and thicker which led the overall combustion delay effect of the composite board. Especially, GnP as a carbon-based material, facilitated the char layer formation and increased remarkedly the char yield, which showed higher effect on flame retardant properties than those of the re-PF.

Morphologies and surface properties of cellulose-based activated carbon nanoplates

  • Lee, Seulbee;Lee, Min Eui;Song, Min Yeong;Cho, Se Youn;Yun, Young Soo;Jin, Hyoung-Joon
    • Carbon letters
    • /
    • v.20
    • /
    • pp.32-38
    • /
    • 2016
  • In this study, cellulose nanoplates (CNPs) were fabricated using cellulose nanocrystals obtained from commercial microcrystalline cellulose (MCC). Their pyrolysis behavior and the characteristics of the product carbonaceous materials were investigated. CNPs showed a relatively high char yield when compared with MCC due to sulfate functional groups introduced during the manufacturing process. In addition, pyrolyzed CNPs (CCNPs) showed more effective chemical activation behavior compared with MCC-induced carbonaceous materials. The activated CCNPs exhibited a microporous carbon structure with a high surface area of 1310.6 m2/g and numerous oxygen heteroatoms. The results of this study show the effects of morphology and the surface properties of cellulose-based nanomaterials on pyrolysis and the activation process.

Preparation and Characterization of Bamboo-based Activated Carbon by Phosphoric Acid and Steam Activation (인산 및 수증기 활성화에 의한 대나무 활성탄 제조 및 특성 연구)

  • Park, Jeong-Woo;Ly, Hoang Vu;Oh, Changho;Kim, Seung-Soo
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.129-139
    • /
    • 2019
  • Bamboo is an evergreen perennial plant, and it is known as one of the most productive and fastest-growing plants in the world. It grows quickly in moderate climates with only moderate water and fertilizer. Traditionally in Asia, bamboo is used for building materials, as a food source, and as versatile raw materials. Bamboo as a biomass feedstock can be transformed to prepare activated carbon using the thermal treatment of pyrolysis. The effect of process variables such as carbonization temperature, activation temperature, activation time, the amount of steam, and the mixing ratio of phosphoric acid and bamboo were systematically investigated to optimize the preparation conditions. Steam activation was proceeded after carbonization with a vapor flow rate of $0.8{\sim}1.8mL-H_2O\;g-char^{-1}\;h^{-1}$ and activation time of 1 ~ 3 h at $700{\sim}900^{\circ}C$. Carbon yield and surface area reached 2.04 ~ 20.59 wt% and $499.17{\sim}1074.04m^2\;g^{-1}$, respectively, with a steam flow rate of $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$ for 2 h. Also, the carbon yield and surface area were 24.67 wt% and $1389.59m^2\;g^{-1}$, respectively, when the bamboo and phosphoric acid were mixed in a 1:1 weight ratio ($700^{\circ}C$, 2 h, $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$). The adsorption of methylene blue into the bamboo activated carbon was studied based on pseudo first order and second order kinetics models. The adsorption kinetics were found to follow the pseudo second order model, which is governed by chemisorption.

Preparation & Properties of the Flame Retarded NBR Foams with Phosphorus/Nitrogen-Containing Flame Retardants (인/질소계 난연제를 포함한 난연 NBR 발포체의 제조 및 특성)

  • Jo, Byung-Wook;Moon, Sung-Chul;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.105-120
    • /
    • 2004
  • The flame retarded NBR foams were prepared with metal hydroxides and various phosphorus/nitrogen-contain ing flame retardants. The dependency of the phosphorus content on thermal properties, flame retardancy, smoke density, and foaming properties were investigated in the foams. Foaming properties and morphology of the flame retarded NBR foams with P/N flame retardants( ${\le}10 phr$) were similar to those of the foams without P/N ones but containing metal hydroxides The flame retardancy of the foams was improved with increasing the phosphorus content and char formation under combustion atmosphere. The cone-calorimeter test and LOI index were also coincided with the TGA analysis quite well. The heat release rate (HRR), total heat release (THR), and effective heat of combustion (EHC) were decreased, whereas the carbon monoxide yield was increased with increase of the phosphorus content of P/N flame retardant. The smoke density values were closely related with CO yield values obtained by the cone-calorimeter test due to the high and hard char formation.

A Study on Pyrolytic and Anatomical Characteristics of Korean Softwood and Hardwood (국산 침·활엽수재의 열분해 및 해부학적 특성에 관한 연구)

  • Kim, Dae-Young;Kang, Sung-Ho;Jeong, Heon-young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.31-42
    • /
    • 2007
  • To investigate the pyrolytic and anatomical characteristics of Korean softwood, Pinus densi-flora, Pinus rigida and Larix leptolepis, and hardwood, Acer palntatum, Fraxinus rhynchophylla and Quercus variabilis, chemical components analysis, TG-DTA (Thermogravimetric Analysis & Differential Thermal Analysis), MBA (Methylene Blue Adsorption) test and SEM observation were carried out. For TG-DTA, samples were carbonized up to $800^{\circ}C$ at the heating rate of $10^{\circ}C$/min under $N_2$ flows 1 l/min using thermogravimetric analyzer. Chemical component analysis of all samples resulted in typical contents of major wood component. In TG-DTA results, softwood showed higher char yield than hardwood, and lignin displayed the highest char yield among the major wood components. All samples showed typical TGA, DTG and DTA curves for wood pyrolysis except a few differences between softwood and hardwood. Content of lignin influenced its pyrolysis characteristics, while molecular structure of lignin affected not only the weight loss but also the yield of char. In MBA test results, MBA of softwoods was higher than that of hardwoods. Char of Pinus densiflora showed the highest MBA, but its degree was lower than activated carbon or fine charcoal about 23 and 4 times, respectively. SEM observation showed carbonization process preserves wood structure and retain the micro-structure of wood fibers.

A Study on the Manufacture of Activated Carbon using Indonesian Coal (인도네시아 석탄을 이용한 활성탄 제조에 관한 연구)

  • Baek, Ill-Hyun;Kim, Tae-Young;Yeon, Ik-June;Lee, Jeong-Sik;Lee, Dong-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.419-423
    • /
    • 1998
  • Indonesian coal-based activated carbon was manufactured with steam-reaction method. Also effects of carbonization temperature and steam amount on the process yield and quality of the product were investigated at the activation temperature of $900^{\circ}C$. The rotary kiln type furnace was used for both carbonization and activation and the optimum operation conditions were carbonization temperature of $700^{\circ}C$, steam amount of 2.7g steam/g char and activation temperature of $900^{\circ}C$. At this condition, the iodine value of activated carbon was 1,010 mg/g. Methylene Blue Adsorption Number was 230mg/g and B.E.T. surface area was $1,020m^2/g$ with the hardness about 97.

  • PDF

Study on a Carbon Dioxide Gasification for Wood Biomass using a Continuous Gasifier (연속식 가스화로를 이용한 목질계 바이오매스 이산화탄소 가스화 연구)

  • Park, Min Sung;Chang, Yu Woon;Jang, Yu Kyung;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.704-710
    • /
    • 2014
  • Biomass is considered an alternative energy which can solve an greenhouse gas problem like $CO_2$ which is a major contributor to global warming. The biomass can be converted to various energy sources through thermochemical conversion. In this study, a continuous gasifier was engineered for a wood biomass gasification. The biomass was used a waste wood. The experiments of $CO_2$ gasification were achieved as the gasification temperature, moisture content and input $CO_2$ concentration. The results showed that the yield of producer gas increased with an increasing the gasification temperature. The amount of the light tar increased due to the decomposition of gravimetric tar by the thermal cracking, and the char was confirmed pore development through the SEM analysis. The CO concentration was increased with an increased input $CO_2$ concentration from Boudouard reaction. Through the parametric screening studies, the hydrogen and carbon monoxide concentration were 32.91% and 48.33% at the optimal conditions of this test rig.

A Study on the Pyrolysis Processing for sludge disposal in sewage treatment plant (하수처리장내 슬러지 처리를 위한 열분해공정에 관한 연구)

  • Ha, Sang-An;Kim, Hyeoog-Seok;Sung, Nak-Chang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.4
    • /
    • pp.65-74
    • /
    • 2002
  • This Study was investigated operating condition of pyrolysis processing for sludge disposal in sewage treatment plant. Important parameters studied include running time of pyrolysis, run time of dry and pyrolysis processing, water content of sewage sludge, solids amount of sewage sludge(TS%), condition of pyrolysis temperature. Most degradation reaction of sewage sludge are first order, it assumed first order and elucidated the kinetics. This was the basis of characteristics analysis of sludge degradation mechanism. Also, with the increasing of temperature, how the yield of oil and char product change was observed, and the distribution of gas product components was observed. Main components of gas and carbon product are a little difference with pyrolysis temperature, but it consist of $CH_4$, $C_2H_4$, $C_3H_8$, $C_4H_{10}$, toluene, $C_6H_6$, $SO_2$, CO etc. The gas of $C_1-C_4$ yield increased along with degradation temperature of $670^{\circ}C$ and oil yield decreased of $C_6H_6$ and $C_6H_5OH$ with temperature of $600^{\circ}C$. Particularly, low value added char yield 134kg/t at $670^{\circ}C$, but increased to 194kg/t at pyrolysis temperature of $600^{\circ}C$. In the result of elementary analysis on it, it is mainly composed of carbon. From this fact, in pyrolysis of sludge, it comfirmed that carbonization reaction occur at high temperature well.

  • PDF

Production and CO2 Adsorption Characteristics of Activated Carbon from Bamboo by CO2 Activation Method (CO2 활성화법에 의한 대나무 활성탄 제조와 CO2 흡착 특성)

  • Bak, Young-Cheol;Cho, Kwang-Ju;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.146-152
    • /
    • 2005
  • The activated carbon was produced from Sancheong bamboo by carbon dioxide gas activation methods. The carbonization of raw material was conducted at $900^{\circ}C$, and $CO_2$ activation reactions were conducted under various conditions: activation temperatures of $750-900^{\circ}C$, flow rates of carbon dioxide $5-30cm^3/g-char{\cdot}min$, and activation time of 2-5 h. The yield, adsorption capacity of iodine and methylene blue, specific surface area and pore size distribution of the prepared activated carbons were measured. The adsorption capacity of iodine (680.8-1450.1 mg/g) and methylene blue (23.5-220 mg/g) increased with increasing activation temperature and activation time. The adsorption capacity of iodine and methylene blue increased with the $CO_2$ gas quantity in the range of $5-18.9cm^3/g-char{\cdot}min$. But those decreased over those range due to the pore shrinkage. The specific volume of the mesopore and macropore of bamboo activated carbon were $0.65-0.91cm^3/g$. Because of this large specific volume, it can be used to the biological activated carbon process. Bamboo activated carbon phisically adsorbed the $CO_2$ of maximum 106 mg/g-A.C in the condition of 90% $CO_2$ and adsorption temperature of $20^{\circ}C$. The $CO_2$ adsorption ability of bamboo activated carbon was not changed in the 5 cyclic test of desorption and adsorption.

Selective Production of Monomeric Phenols from Lignin via Two-step Catalytic Cracking Process (2단계 촉매 분해공정을 이용한 리그닌 유래 선택적 페놀화합물 생산)

  • Kim, Jae-Young;Heo, Sujung;Park, Shin Young;Choi, In-Gyu;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.278-287
    • /
    • 2017
  • In this study, lignin was efficiently degraded via two-step catalytic cracking process and lignin-oil, char, and gas was produced as lignin degraded products. Three kinds of catalysts (MgO, CaO, and Pt/C) were used in first catalytic cracking step and the highest lignin-oil yield (76.2 wt%) was obtained in Pt/C catalyst with the smallest char formation (4.1 wt%). GC-MS/FID analysis revealed that 18 kinds of monomeric phenols existed in lignin-oil and sum of them was the highest in Pt/C condition (97.8 mg/g lignin). Meanwhile, relatively lower yield of monomeric phenols was produced in MgO and CaO condition because of their absorption on catalysts. Lignin-oil produced over Pt/C was introduced to second catalytic cracking process with porous Pd/activated carbon aerogel catalyst. From this process, four kinds of monomeric phenols such as 4-ethylguaiacol, 4-propylguaiacol, 4-ethylsyringol, 4-propylsyringol were selectively produced at 0.89 - 1.82 wt% level.