• Title/Summary/Keyword: Carbon Capture and Storage

Search Result 161, Processing Time 0.029 seconds

Effect Assessment and Derivation of Ecological Effect Guideline on CO2-Induced Acidification for Marine Organisms (이산화탄소 증가로 인한 해수 산성화가 해양생물에 미치는 영향평가 및 생태영향기준 도출)

  • Gim, Byeong-Mo;Choi, Tae Seob;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil;Jeon, Ei-Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.153-165
    • /
    • 2014
  • Carbon dioxide capture and storage (CCS) technology is recognizing one of method responding the climate change with reduction of carbon dioxide in atmosphere. In Korea, due to its geological characteristics, sub-seabed geological $CO_2$ storage is regarded as more practical approach than on-land storage under the goal of its deployment. However, concerns on potential $CO_2$ leakage and relevant acidification issue in the marine environment can be an important subject in recently increasing sub-seabed geological $CO_2$ storage sites. In the present study effect data from literatures were collected in order to conduct an effect assessment of elevated $CO_2$ levels in marine environments using a species sensitivity distribution (SSD) various marine organisms such as microbe, crustacean, echinoderm, mollusc and fish. Results from literatures using domestic species were compared to those from foreign literatures to evaluate the reliability of the effect levels of each biological group and end-point. Ecological effect guidelines through estimating level of pH variation (${\delta}pH$) to adversely affect 5 and 50% of tested organisms, HC5 and HC50, were determined using SSD of marine organisms exposed to the $CO_2$-induced acidification. Estimated HC5 as ${\delta}pH$ of 0.137 can be used as only interim quality guideline possibly with adequate assessment factor. In the future, the current interim guideline as HC5 of ${\delta}pH$ in this study will look forward to compensate with supplement of ecotoxicological data reflecting various trophic levels and indigenous species.

Reduction of Carbon-Dioxide Emission Applying Carbon Capture and Storage(CCS) Technology to Power Generation and Industry Sectors in Korea (국내 전력 발전 및 산업 부문에서 탄소 포집 및 저장(CCS) 기술을 이용한 이산화탄소 배출 저감)

  • Wee, Jung-Ho;Kim, Jeong-In;Song, In-Sung;Song, Bo-Yun;Choi, Kyoung-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.961-972
    • /
    • 2008
  • In 2004, total emissions of Greenhouse Gases(GHGs) in Korea was estimated to be about 590 million metric tons, which is the world's 10th largest emissions. Considering the much amount of nation's GHG emissions and growing nation's position in the world, GHG emissions in Korea should be reduced in near future. The CO$_2$ emissions from two sub-sections of energy sector in Korea, such as thermal power plant and industry section(including manufacturing and construction industries), was about 300 million metric tons in 2004 and this is 53.3% of total GHG emissions in Korea. So, the mitigation of CO$_2$ emissions in these two section is more important and more effective to reduce the nation's total GHGs than any other fields. In addition, these two section have high potential to qualitatively and effectively apply the CCS(Carbon Capture and Storage) technologies due to the nature of their process. There are several CCS technologies applied to these two section. In short term, the chemical absorption technology using amine as a absorbent could be the most effectively used. In middle or long term, pre-combustion technology equipped with ATR(Autothermal reforming), or MSR-$H_2$(Methane steam reformer with hydrogen separation membrane reactor) unit and oxyfuel combustion such as SOFC+GT(Solid oxide fuel cell-Gas turbine) process would be the promising technologies to reduce the CO$_2$ emissions in two areas. It is expected that these advanced CCS technologies can reduce the CO$_2$ avoidance cost to $US 8.5-43.5/tCO$_2$. Using the CCS technologies, if the CO$_2$ emissions from two sub-sections of energy sector could be reduced to even 10% of total emissions, the amount of 30 million metric tons of CO$_2$ could be mitigated.

Numerical Simulation of a 100 $MW_e$-scale Wall-fired Boiler for Demonstration of Oxy-coal Combustion (전산유동해석을 이용한 100 $MW_e$급 석탄 순산소 연소 실증 보일러의 설계 및 운전조건 평가)

  • Chae, Tae-Young;Park, Sang-Hyun;Hong, Jae-Hyeon;Yang, Won;Lee, Sang-Hoon;Ryu, Chang-Kook
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • As one of the main technologies for carbon capture and storage in power generation, oxy-coal combustion is being developed for field demonstration in Korea. This study presents the results of numerical simulation for combustion in a single-wall-fired 100 $MW_e$-scale boiler proposed for the initial design of the demonstration plant. Using a commercial CFD code, the detailed combustion, flow and heat transfer characteristics were assessed both for air-mode and oxy-mode combustion. The results show that stable combustion can be achieved in the dual mode operation with the current boiler configuration. However, the differences in the flow pattern and heat transfer between the two combustion modes need to be considered in the design and operation which is mainly due to the larger density and specific heat of $CO_2$ compared to $N_2$. Further development of the boiler design is required using improved numerical modeling for radiative heat transfer and combustion.

Post-combustion CO2 capture with potassium L-lysine (Potassium L-lysine을 이용한 연소 후 이산화탄소 포집)

  • Lim, Jin Ah;Yoon, Yeo Il;Nam, Sung Chan;Jeong, Soon Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4627-4634
    • /
    • 2013
  • Carbon dioxide is one of the main causes of global warming. In order to develop a novel absorbent, the characteristics of amino acid salts solution as a solvent for $CO_2$ capture in continuous process were investigated. The cost of $CO_2$ capture is almost 70% of total cost of CCS (carbon dioxide capture and storage). In the carbon dioxide capture process, process maintenance costs consist of the absorbent including the absorption, regeneration, degradation, and etc. It is very important to study the characteristics of absorbent in continuous process. In this study, we have investigated the properties of potassium L-lysine (PL) for getting scale-up factors in continuous process. To obtain optimum condition for removal efficiency of $CO_2$ in continuous process by varying liquid-gas (L/G) ratio, concentration of $CO_2$ and absorbent (PL) were tested. The stable condition of absorber and regenerator (L/G) ratio is 3.5. In addition, PL system reveals the highest removal efficiency of $CO_2$ with 3.5 of L/G and 10.5 vol% $CO_2$ ($1.5Nm^3/h$).

Carbonization of Coal-Fly Ash Containing High CaO Compound (CaO 화합물이 다량 함유된 비산재의 탄산화)

  • Sim, Jun Soo;Lee, Ki Gang;Kim, Yu Taek;Kang, Seung Ku
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • This study was conducted to recycle fly ash containing an abundance of CaO generated from combustion in a circulating layer as a carbon storage medium. The study utilized XRD, TG-DTA and XRF analyses during the hydration of fly ash and identified calcium substances within fly ash that could be used in a carbonation process. $Ca^{2+}$ ions in the calcium substances were easily converted to hydrates. A carbonation experiment was done, which used the method of $CO_2$ gas injection to produce suspensions by mixing fly ash with distilled water. The results were analyzed using TG-DTA, XRD, and pH meter measurements. The study was able to verify that the reaction was completed at a $CO_2$ flow rate of 300cc/min approximately 30 minutes after an injection into a solution with a solid-liquid ratio of 1 : 10 of fly ash and distilled water. Moreover, the stirring time of the suspensions did not influence the reaction, and the reaction time was found to diminish as the portion of the fly ash became smaller. Thus, this study produced carbon storage fly ash having a $CO_2$ storage rate of about 71% through the utilization of the CaO content contained within fly ash.

Case Study on Induced Seismicity during the Injection of Fluid Related to Energy Development Technologies (에너지개발기술에 있어 유체주입에 따른 유발지진 발생 사례분석)

  • Lee, Chung-In;Min, Ki-Bok;Kim, Kwang-Il
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.418-429
    • /
    • 2014
  • Induced seismicity related to four energy development technologies that involve fluid injection or withdrawal: geothermal energy, conventional oil and gas development including enhanced oil recovery (EOR), shale gas recovery, and carbon capture and storage (CCS) is reviewed by literature investigation. The largest induced seismic events reported in the technical literature are associated with projects that did not balance the large volume of fluids injected into, or extracted from the underground reservoir. A statistical observation shows that the net volume of fluid injected and/or extracted may serve as a proxy for changes in subsurface stress conditions and pore pressure, and other factors. Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and the amount of fluid being withdrawn, such as geothermal and most oil and gas development, may produce fewer induced seismic events than technologies that do not maintain fluid balance, such as long-term wastewater disposal wells and CCS projects.

A Study on Implementation and Deriving Future Tasks of 「The Korean National CCS Master Action Plan」 (「국가 CCS 종합추진계획」 이행점검 및 개선과제 도출 연구)

  • Cho, GaBi;Cho, Hayoung;Park, Noeon
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.237-247
    • /
    • 2016
  • Global warming caused by greenhouse gases is one of the foremost challenges in the international community. As an alternative to solve this problem, the importance of CCS (Carbon Capture and Storage) technology is increasing. However, due to the delay of European financial crisis recovery, some large-scale CCS projects were postponed. In turn, large-scale CCS projects in South Korea have not been launched as originally planned. Given these situations, it is important to review the latest R&D activities related to CCS in South Korea, and then adjust relevant national policy accordingly. The purpose of this study is to identify policy issues for the effective promotion of CCS technology in South Korea. Following the analysis of recent global trend on CCS policy, we evaluated the results and achievements from national CCS projects, which had been listed under the "Korean National CCS Master Action Plan (2010)". Especially, we tried to review the attainability for the original goal of each project. Through the present study, we identified the current status of CCS technology in South Korea and suggested efficient ways to be taken in order to increase efficiency in implementing national CCS policy in the future.

Analysis of Patent Trends on the CCUS Technologies (특허 정보 분석을 통한 CCUS 연구개발 동향 분석)

  • Kim, Jung-min;Kim, Seong-Yong;Bae, Junhee;Shinn, Young-Jae;Ahn, Eunyoung;Lee, Jae-Wook
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.491-504
    • /
    • 2020
  • Given the continued climate change and global warming, various technologies for greenhouse gas reduction were discussed worldwide as all 195 countries participated in the Paris Agreement on the reduction of greenhouse gases. The agreement was adopted at the 21st Conference of Parties to the UNFCCC (COP21), which was held in Paris, France, in December 2015, and it revealed that reducing CO2 is the most efficient method of greenhouse gas reduction. Accordingly, carbon capture/utilization/storage (CCUS) technology has been noted as a means of making practical contributions to CO2 reduction, and research and development (R&D) activities in many countries are active in the field of CCUS technology. Therefore, this study aims to provide a basis for CCUS R&D and strategic support measures by analyzing patent trends in technologies related to CCUS. The patent analysis collected a total of 10,137 patents in the United States, Korea, Japan, Europe, and China; the number of patents in the United States was the highest according to patent analysis by country. According to an analysis by technology, capture-related technology was high at 60%, but given the recent increase in technology related to utilization, technology demonstration, R&D, and policy support should be continued.

Comparison of Quench Methods in The Coal Gasification System with Carbon Capture (CO2 포집을 포함한 석탄 가스화 시스템에서 급냉 방법에 따른 비교)

  • Lee, Joong-Won;Kim, Ui-Sik;Ko, Kyung-Ho;Chung, Jae-Hwa;Hong, Jin-Pyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.285-292
    • /
    • 2012
  • The integrated gasification combined cycle (IGCC) system is well known for its high efficiency compared with that of other coal fueled power generation system. IGCC offers substantial advantages over pulverized coal combustion when carbon capture and storage (CCS) is required. Commercial plants employ different types of quenching system to meet the purpose of the system. Depending on that, the downstream units of IGCC can be modeled using different operating conditions and units. In case with $CO_2$ separation and capture, the gasifier product must be converted to hydrogen-rich syngas using Water Gas Shift (WGS) reaction. In most WGS processes, the water gas shift reactor is the biggest and heaviest component because the reaction is relatively slow compared to the other reactions and is inhibited at higher temperatures by thermodynamics. In this study, tehchno-econimic assessments were found according to the quench types and operating conditions in the WGS system. These results can improve the efficiency and reduce the cost of coal gasification.