• Title/Summary/Keyword: Carbon Capture

Search Result 378, Processing Time 0.022 seconds

Applicability of DGCI (Dark Green Color Index) to Assess Potential Impacts of CO2 Leakage from the Geological Storage Site (이산화탄소 지중저장 시설의 잠재적 누출 판단을 위한 DGCI(Dark Green Color Index) 적용 가능성 평가)

  • Yoo, Sin Yee;Song, Yoon Jin;Oh, Hee Joo;Kim, You Jin;Yoo, Ga Young
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.351-356
    • /
    • 2016
  • The carbon capture and storage (CCS), which collects and stores carbon dioxide in a geological site, is a promising option to mitigate climate change. However, there is the possibility of carbon dioxide leakage from the soil in the steps of collecting, transporting, and storing. To ensure the feasibility of this technology, it is important to monitor the leakage of carbon dioxide and to assess the potential impacts. As plants are sensitive to the changes in carbon dioxide in the soil environment, we can utilize plant parameter to detect the carbon dioxide leakage. Currently, chlorophyll a content is a conventional index indicating the changes in plants, however, this method is labor intensive and it only utilizes a small portion of leaves. To overcome its limitations, a simple spectroscopic parameter, DGCI (dark green color index), was suggested as an easy and quick indicator. In this study, we compared the values of chlorophyll a contents with DGCI from the experiment investigating the impacts of high underground $CO_2$ on grape plants. Results suggest that DGCI had high correlation with chlorophyll a contents and it has high potential to be utilized as an easy indicator to monitor plants' responses to $CO_2$ treatment.

Conceptual Design of 100 MWe Oxy-coal Power Plant-Youngdong Project (100 MWe 순산소 석탄연소 발전시스템의 개념설계-영동 프로젝트)

  • Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.30-45
    • /
    • 2012
  • An existing unit of power plant is considered to refurbish it for possible application of carbon capture and storage(CCS). Conceptual design of the plant includes basic considerations on the national and international situation of energy use, environmental concerns, required budget, and time schedule as well as the engineering concept of the plant. While major equipment of the recently upgraded power plant is going to be reused, a new boiler for air-oxy fired dual mode operation is to be designed. Cryogenic air separation unit is considered for optimized capacity, and combustion system accommodates flue gas recirculation with multiple cleaning and humidity removal units. The flue gas is purified for carbon dioxide separation and treatment. This paper presents the background of the project, participants, and industrial background. Proposed concept of the plant operation is discussed for the possible considerations on the engineering designs.

Comparison of hemocytic carbonic anhydrase activity of bivalves

  • Cho, Sang-Man;Jeong, Woo-Geon;Choi, Young-Joon
    • The Korean Journal of Malacology
    • /
    • v.32 no.1
    • /
    • pp.63-65
    • /
    • 2016
  • Carbonic anhydrase (CA), which is involved in shell formation processes in bivalves, is one of the major biocatalysts for carbon capture and storage. In this study we investigated CA activity in the total hemocytic proteins of five bivalves. The highest CA activity was observed in Scapharca broughtonii, which had more than twice the activity found in Crassostrea gigas. No CA activity was observed among the total hemocytic proteins of Pinctada fucata and Saxidomus purpuratus. The results suggest that marine invertebrates may provide a better source of CA, as an alternative to mammalian sources.

Technology Trend Analysis of CO2 Solvent by Patent Information (특허정보를 활용한 습식 이산화탄소 포집 기술동향 분석)

  • Lee, Yun-Seock;Lee, Su-Jin;Lee, Jeong-Gu;Hong, Soon-Jik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.5
    • /
    • pp.250-257
    • /
    • 2015
  • As recognized by all scientific and industrial groups, carbon dioxide ($CO_2$) capture and sequestration (CCS) could play an important role in reducing greenhouse gas emissions. This paper is aimed at identifying evolving technological trends from the objective information of patents related to carbon capture technology by solvent. In this study the patents applied in korea, japan, china, canada, US, EU from 1993 to 2013 were analyzed. The result of patent analysis could be used for R&D and policy making of domestic CCS industry.

Performance Analysis on Gas Turbine based Oxy-fuel Combustion Power Plants (가스터빈과 순산소 연소를 적용한 발전시스템의 성능해석)

  • Lee, Young-Duk;Lee, Sang-Min;Park, Jun-Hong;Yu, Sang-Seok;Ahn, Kook-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3169-3174
    • /
    • 2008
  • Future power plants will be required to adopt some type of carbon capture and storage (CCS) technologies to reduce their CO2 emissions. One of distinguished CCS techniques expected to resolve the green house effect is to apply the oxy-fuel combustion technique to power plant, and a lot of research/demonstration programs have been going on in the world. In this paper, CO2-capturing power plants based on gas turbine and oxy-fuel combustion are investigated over several types of configurations. As a prior step, simulation model for 500 MW-class combined cycle power plant was set and was used as a reference case. The efficiencies of several power plants was compared and the advantages and disadvanteges was investigated.

  • PDF

Performance Analysis of Upgrading Process with Amine-Based CO2 Capture Pilot Plant

  • Kwak, No-Sang;Lee, Junghyun;Lee, Dong Woog;Lee, Ji Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • This study applied upgrades to the processes of a 10 MW wet amine $CO_2$ capture pilot plant and conducted performance evaluation. The 10 MW $CO_2$ Capture Pilot Plant is a facility that applies 1/50 of the combustion flue gas produced from a 500 MW coal-fired power plant, and is capable of capturing up to 200 tons of $CO_2$. This study aimed to quantitatively measure efficiency improvements of post-combustion $CO_2$ capture facilities resulting from process upgrades to propose reliable data for the first time in Korea. The key components of the process upgrades involve absorber intercooling, lean/rich amine exchanger efficiency improvements, reboiler steam TVR (Thermal Vapor Recompression), and lean amine MVR (Mechanical Vapor Recompression). The components were sequentially applied to test the energy reduction effect of each component. In addition, the performance evaluation was conducted with the absorber $CO_2$ removal efficiency maintained at the performance evaluation standard value proposed by the IEA-GHG ($CO_2$ removal rate: 90%). The absorbent used in the study was the highly efficient KoSol-5 that was developed by KEPCO (Korea Electric Power Corporation). From the performance evaluation results, it was found that the steam consumption (regeneration energy) for the regeneration of the absorbent decreased by $0.38GJ/tonCO_2$ after applying the process upgrades: from $2.93GJ/ton\;CO_2$ to $2.55GJ/tonCO_2$. This study confirmed the excellent performance of the post-combustion wet $CO_2$ capture process developed by KEPCO Research Institute (KEPRI) within KEPCO, and the process upgrades validated in this study are expected to substantially reduce $CO_2$ capture costs when applied in demonstration $CO_2$ capture plants.

Ambient CO2 Adsorption and Regeneration Performance of Zeolite and Activated Carbon (제올라이트와 활성탄을 이용한 대기 중 CO2 흡착 및 재생 특성)

  • Park, Il-Gun;Hong, Min-Sun;Kim, Byum-Seok;Kang, Ho-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.307-311
    • /
    • 2013
  • Direct Air Capture (DAC) technology using reusable energy is a plausible process to capture $CO_2$ from non-point sources. In this paper, adsorption and desorption were repeatedly tested using low concentration $CO_2$. Three types of adsorbents were examined in cyclic $CO_2$ adsorption and thermal regeneration. Adsorption capacities of zeolite 5A, zeolite 13X and activated carbon were 21 mg/g, 12 mg/g and 6 mg/g, respectively. Zeolite 5A shows the highest adsorption capacities after cyclic thermal regeneration.

Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA, and AMP Solutions

  • Kim, Young Eun;Lim, Jin Ah;Jeong, Soon Kwan;Yoon, Yeo Il;Bae, Shin Tae;Nam, Sung Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.783-787
    • /
    • 2013
  • The separation and capture process of carbon dioxide from power plants is garnering interest as a method to reduce greenhouse gas emissions. In this study, aqueous alkanolamine solutions were studied as absorbents for $CO_2$ capture. The solubility of $CO_2$ in aqueous alkanolamine solutions was investigated with a continuous stirred reactor at 313, 333 and 353 K. Also, the heat of absorption ($-{\Delta}H_{abs}$) between the absorbent and $CO_2$ molecules was measured with a differential reaction calorimeter (DRC) at 298 K. The solubility and heat of absorption were determined at slightly higher than atmospheric pressure. The enthalpies of $CO_2$ absorption in monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), and 2-amino-2-methyl-1-propanol (AMP) were 88.91, 70.44, 44.72, and 63.95, respectively. This investigation showed that the heat of absorption is directly related to the quantity of heat for absorbent regeneration, and is dependent on amine type and $CO_2$ loading.

Preparation of Activated Carbon Fiber Adsorbent for Enhancement of CO2 Capture Capacity (이산화탄소 포집능 향상을 위한 활성탄소 섬유 흡착제 제조)

  • Hwang, Su-Hyun;Park, Hyun-Soo;Kim, Dong-woo;Jo, Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.6
    • /
    • pp.538-547
    • /
    • 2015
  • Test activated carbon fiber (ACF) was prepared from Polyacrylonirile (PAN) through oxidation and chemical activation. Immersion of ACF precursors in the aqueous KOH solution enhanced the surface structure, as examined by BET pore analysis. Specific surface area increased greatly from less than $70m^2/g$ to $1226m^2/g$ with 4 M KOH, and total pore volume also rose up to $0.483cm^3/g$. In particular, it was found that micropores favorable for $CO_2$ molecule capture occupied more than 95%. Maximum $CO_2$ adsorption capacity was 3.59 mmol/g at 298 K. Low depth of pores in the present ACF may facilitate the molecules' desorption for its regeneration.