• Title/Summary/Keyword: Carbon Anode

Search Result 458, Processing Time 0.022 seconds

The Electrochemical Characteristics of Electrochemically Prepared Poly(p-phenylene) and PPP-based Carbon (전해중합법으로 제조한 Poly(p-phenylene)과 PPP-based Carbon의 전기 화학적 특성)

  • 김주승;조재철;정운조;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.70-73
    • /
    • 1997
  • The purpose of this study is to research and develop poly(p-phenylene)(PPP)-based carbon obtained by pyrolyzing electrochemically prepared PPP as a anode of rocking chair batteries. Disordered carbon materials were obtains by heat-treating of PPP films in a nitrogen atmosphere at 4$0^{\circ}C$ to 110$0^{\circ}C$ for 1 hour. The carbon prepared by heat treatment showed a broad x-ray diffraction peak having characteristics of disordered carbon. Carbon electrodes were charged and discharged at a current density of 0.1㎃/$\textrm{cm}^2$. First discharge capacity of 267㎃h/g and 34% of charge/discharge efficiency were observed from PPP-based carbon prepared at $700^{\circ}C$.

  • PDF

The Electrical Properties of Cementitious Composites with Carbon Black and MWCNT for the Development of Cement-Based Battery (시멘트기반 배터리 개발을 위한 Carbon Black 및 MWCNT 혼입 시멘트 복합체의 전기적 특성 분석)

  • Lee, Joo-Ha
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.212-213
    • /
    • 2018
  • The cementitious composites have been developed to satisfy various demands of the construction market. The conductive concrete, which is a carbon-based cementitious composite, was used for the deicing or the detecting the internal crack. The cement-based battery is a technology that applies the basic concept of the alkaline battery to these conductive concretes. The cementitious composites could have a function as batteries, through a mixing of anode and cathode, which were consist of the zinc and manganese dioxide powder. The carbon-based materials, which have a significant effect on electrical properties, could be considered as the main variable in cement-based batteries. Therefore, in this study, the effects of carbon-based materials were investigated. Two types of materials, including the Carbon black and Multi-walled carbon nanotube(MWCNT), were considered as the main variables. From the experiment results, the electrical characteristics such as resistance, voltage, and current were compared according to the age.

  • PDF

Mo,Cu-doped CeO2 as Anode Material of Solid Oxide Fuel Cells (SOFCs) using Syngas as Fuel

  • Diaz-Aburto, Isaac;Hidalgo, Jacqueline;Fuentes-Mendoza, Eliana;Gonzalez-Poggini, Sergio;Estay, Humberto;Colet-Lagrille, Melanie
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.246-256
    • /
    • 2021
  • Mo,Cu-doped CeO2 (CMCuO) nanopowders were synthesized by the nitrate-fuel combustion method aiming to improve the electrical and electrochemical properties of its Mo-doped CeO2 (CMO) parent by the addition of copper. An electrical conductivity of ca. 1.22·10-2 S cm-1 was measured in air at 800℃ for CMCuO, which is nearly 10 times higher than that reported for CMO. This increase was associated with the inclusion of copper into the crystal lattice of ceria and the presence of Cu and Cu2O as secondary phases in the CMCuO structure, which also could explain the increase in the charge transfer activities of the CMCuO based anode for the hydrogen and carbon monoxide electro-oxidation processes compared to the CMO based anode. A maximum power density of ca. 120 mW cm-2 was measured using a CMCuO based anode in a solid oxide fuel cell (SOFC) with YSZ electrolyte and LSM-YSZ cathode operating at 800℃ with humidified syngas as fuel, which is comparable to the power output reported for other SOFCs with anodes containing copper. An increase in the area specific resistance of the SOFC was observed after ca. 10 hours of operation under cycling open circuit voltage and polarization conditions, which was attributed to the anode delamination caused by the reduction of the Cu2O secondary phase contained in its microstructure. Therefore, the addition of a more electroactive phase for hydrogen oxidation is suggested to confer long-term stability to the CMCuO based anode.

Electrochemical Properties of Tin oxide-flyash Composite for Lithium Ion Polymer Battery (리튬 이온 폴리머 전지용 Tin oxide-flyash Composite 전극의 전기화학적 특성)

  • Kim, Jong-Uk;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.88-90
    • /
    • 2003
  • The purpose of this study is to research and develop tin oxide-flash composite for lithium Ion polymer battery. Tin oxide is one of the promising material as a electrode active material for lithium Ion polymer battery (LIPB). Tin-based oxides have theoretical volumetric and gravimetric capacities that are four and two times that of carbon, respectively. We investigated cyclic voltammetry and charge/discharge cycling of SnO-flyash/SPE/Li cells. The first discharge capacity of SnO-flyash composite anode was 720 mAh/g. The discharge capacity of SnO-flyash composite anode 412 and 314 mAh/g at cycle 2 and 10 at room temperature, respectively. The SnO-flyash composite anode with PVDF-PMMA-PC-EC-$LiClO_4$ electrolyte showed good capacity with cycling.

  • PDF

A Study on the Impedance Characteristics and Mechanisms of Li Intecalation on the Tin Oxide-flyash Composite Electrodes (Tin Oxide-flyash Composite 전극의 리튬 이온 Intercalation 메카니즘과 임피던스 특성에 관한 연구)

  • Gu, Hal-Bon;Kim, Jong-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1224-1229
    • /
    • 2004
  • The purpose of this study is to research and develop tin oxide-flyash composite for lithium Ion polymer battery. Tin oxide is one of the promising material as a electrode active material for lithium Ion polymer battery (LIPB). Tin-based oxides have theoretical volumetric and gravimetric capacities that are four and two times that of carbon, respectively. We investigated cyclic voltammetry, AC impedance and charge/discharge cycling of SnO$_2$-flyash/SPE/Li cells. The first discharge capacity of SnO$_2$-flyash composite anode was 639 mAh/g. The discharge capacity of SnO$_2$-flyash composite anode was 563 and 472 mAh/g at 6th and 15th cycle, respectively. The SnO$_2$-flyash composite anode with PVDF-PMMA-PC-EC-LiClO$_4$ electrolyte showed good capacity with cycling.

KOH Activated Nitrogen Doped Hard Carbon Nanotubes as High Performance Anode for Lithium Ion Batteries

  • Zhang, Qingtang;Li, Meng;Meng, Yan;Li, An
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.755-765
    • /
    • 2018
  • In situ nitrogen doped hard carbon nanotubes (NHCNT) were fabricated by pyrolyzing tubular nitrogen doped conjugated microporous polymer. KOH activated NHCNT (K-NHCNT) were also prepared to improve their porous structure. XRD, SEM, TEM, EDS, XPS, Raman spectra, $N_2$ adsorption-desorption, galvanostatic charging-discharge, cyclic voltammetry and EIS were used to characterize the structure and performance of NHCNT and K-NHCNT. XRD and Raman spectra reveal K-NHCNT own a more disorder carbon. SEM indicate that the diameters of K-NHCNT are smaller than that of NHCNT. TEM and EDS further indicate that K-NHCNT are hollow carbon nanotubes with nitrogen uniformly distributed. $N_2$ adsorption-desorption analysis reveals that K-NHCNT have an ultra high specific surface area of $1787.37m^2g^{-1}$, which is much larger than that of NHCNT ($531.98m^2g^{-1}$). K-NHCNT delivers a high reversible capacity of $918mAh\;g^{-1}$ at $0.6A\;g^{-1}$. Even after 350 times cycling, the capacity of K-NHCNT cycled after 350 cycles at $0.6A\;g^{-1}$ is still as high as $591.6mAh\;g^{-1}$. Such outstanding electrochemical performance of the K-NHCNT are clearly attributed by its superior characters, which have great advantages over those commercial available carbon nanotubes ($200-450mAh\;g^{-1}$) not only for its desired electrochemical performance but also for its easily and scaling-up preparation.

The Electrochemical characteristics of PPP-based Carbon as Adding with Graphite (PPP-based Carbon의 Graphite 첨가에 따른 전기화학적 특성)

  • Kim, J.S.;Sung, C.H.;Gu, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1597-1599
    • /
    • 1997
  • Disordered carbon materials for anode of lithium rechargeable batteries were showed much larger reversible capacity than graphite. In this paper, we studied the electrochemical characteristics of PPP-based carbon, one of the disordered carbon, as adding with different amount of graphite. PPP-based carbon with 30wt% of graphite showed large reversible capacity, ${\sim}286mAh/g$, irreversible capacity ${\sim}299mAh/g$, and small hysteresis between discharge and charge in carbon/Li cell.

  • PDF

Improvement of the electrochemical properties of low temperature synthesized carbon for anode materials in lithium-ion batteries (리튬이온전지의 음극 재료로서 저온합성탄소의 전기화학적 특성의 향상)

  • 이헌영;장석원;신건철;이성만;이종기;이승주;백홍구
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.55-61
    • /
    • 2000
  • The electrochemical properties of hard carbon anodes in lithium ion batteries were improved by carbon coating using polyvinyl chloride (PVC). The reduction in irreversible capacity occured and the reversible capacity increased. It is suggested that the PVC carbon coating modifies the surface of hard carbon and reduces the surface reaction with species from air. The degree of the graphitization of PVC carbon was controlled by an addition of Ni, and the effect of the amount of Ni addition on the electrochemical properties was discussed.

  • PDF

Properties of Carbon for Application of New Light Source Technology

  • Lee Sang-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.477-479
    • /
    • 2006
  • Carbon films was grown on Si substrates using the method of electrolysis for methanol liquid. Deposition parameters for the growth of the carbon films were current density for the electrolysis, methanol liquid temperature and electrode spacing between anode and cathode. We examined electrical resistance and the surface morphology of carbon films formed under various conditions specified by deposition parameters. It was clarified that the high electrical resistance carbon films with smooth surface morphology are grown when a distance between the electrodes was relatively wider. We found that the electrical resistance in the films was independent of both current density and methanol liquid temperature for electrolysis. The temperature dependence of the electrical resistance in the low resistance carbon films was different from one obtained in graphite.

Fabrication of Carbon Film for New Light Source (광원용 탄소박막의 합성)

  • Lee, Sang-Heon;Choi, Young-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.553-554
    • /
    • 2006
  • Carbon films was grown on Si substrates using the method of electrolysis for methanol liquid. Deposition parameters for the growth of the carbon films were current density for the electrolysis. methanol liquid temperature and electrode spacing between anode and cathode. We examined electrical resistance and the surface morphology of carbon films formed under various conditions specified by deposition parameters. It was clarified that the high electrical resistance carbon films with smooth surface morphology are grown when a distance between the electrodes was relatively wider. We found that the electrical resistance in the films was independent of both current density and methanol liquid temperature for electrolysis. The temperature dependence of the electrical resistance in the low resistance carbon films was different from one obtained in graphite.

  • PDF