DOI QR코드

DOI QR Code

Mo,Cu-doped CeO2 as Anode Material of Solid Oxide Fuel Cells (SOFCs) using Syngas as Fuel

  • Diaz-Aburto, Isaac (Advanced Mining Technology Center (AMTC), Faculty of Physical and Mathematical Sciences, Universidad de Chile) ;
  • Hidalgo, Jacqueline (Advanced Mining Technology Center (AMTC), Faculty of Physical and Mathematical Sciences, Universidad de Chile) ;
  • Fuentes-Mendoza, Eliana (Advanced Mining Technology Center (AMTC), Faculty of Physical and Mathematical Sciences, Universidad de Chile) ;
  • Gonzalez-Poggini, Sergio (Advanced Mining Technology Center (AMTC), Faculty of Physical and Mathematical Sciences, Universidad de Chile) ;
  • Estay, Humberto (Advanced Mining Technology Center (AMTC), Faculty of Physical and Mathematical Sciences, Universidad de Chile) ;
  • Colet-Lagrille, Melanie (Advanced Mining Technology Center (AMTC), Faculty of Physical and Mathematical Sciences, Universidad de Chile)
  • Received : 2020.10.19
  • Accepted : 2020.12.18
  • Published : 2021.05.28

Abstract

Mo,Cu-doped CeO2 (CMCuO) nanopowders were synthesized by the nitrate-fuel combustion method aiming to improve the electrical and electrochemical properties of its Mo-doped CeO2 (CMO) parent by the addition of copper. An electrical conductivity of ca. 1.22·10-2 S cm-1 was measured in air at 800℃ for CMCuO, which is nearly 10 times higher than that reported for CMO. This increase was associated with the inclusion of copper into the crystal lattice of ceria and the presence of Cu and Cu2O as secondary phases in the CMCuO structure, which also could explain the increase in the charge transfer activities of the CMCuO based anode for the hydrogen and carbon monoxide electro-oxidation processes compared to the CMO based anode. A maximum power density of ca. 120 mW cm-2 was measured using a CMCuO based anode in a solid oxide fuel cell (SOFC) with YSZ electrolyte and LSM-YSZ cathode operating at 800℃ with humidified syngas as fuel, which is comparable to the power output reported for other SOFCs with anodes containing copper. An increase in the area specific resistance of the SOFC was observed after ca. 10 hours of operation under cycling open circuit voltage and polarization conditions, which was attributed to the anode delamination caused by the reduction of the Cu2O secondary phase contained in its microstructure. Therefore, the addition of a more electroactive phase for hydrogen oxidation is suggested to confer long-term stability to the CMCuO based anode.

Keywords

Acknowledgement

The authors thank Project Anillo en Ciencias y Tecnologia Topicos Mineria ACM170003 and CONICYT-PIA Project AFB180004 for the financial support to this research. In addition, the authors thank Prof. Ali Akbari-Fakhrabadi from Department of Mechanical Engineering, Universidad de Chile, for providing the GDC powders used for the fabrication of the solid oxide fuel cells tested in this work.

References

  1. S. A. Saadabadi, A. Thallam Thattai, L. Fan, R. E. F. Lindeboom, H. Spanjers, P.V. Aravind, Renew. Energy., 2019, 134, 194-214. https://doi.org/10.1016/j.renene.2018.11.028
  2. F. S da Silva, T. M. de Souza, Int. J. Hydrogen Energy., 2017, 42(41), 26020-26036. https://doi.org/10.1016/j.ijhydene.2017.08.105
  3. K. Al-Khori, Y. Bicer, M. Koc, J. Clean. Prod., 2020, 245, 118924. https://doi.org/10.1016/j.jclepro.2019.118924
  4. U. M. Damo, M. L. Ferrari, A. Turan, A. F. Massardo, Energy, 2019, 168, 235-246. https://doi.org/10.1016/j.energy.2018.11.091
  5. I. Sreedhar, B. Agarwal, P. Goyal, S. A. Singh, J. Electroanal. Chem., 2019, 848, 113315. https://doi.org/10.1016/j.jelechem.2019.113315
  6. N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Prog. Mater. Sci., 2015, 72, 141-337. https://doi.org/10.1016/j.pmatsci.2015.01.001
  7. I. Diaz-Aburto, F. Gracia, M. Colet-Lagrille, Fuel Cells, 2019, 19(2), 147-159. https://doi.org/10.1002/fuce.201800160
  8. S. An, C. Lu, W. L. Worrell, R. J. Gorte, J. M. Vohs, Solid State Ion., 2004, 175(1-4), 135-138. https://doi.org/10.1016/j.ssi.2004.09.029
  9. B. J. M. Sarruf, J. E. Hong, R. Steinberger-Wilckens, P. E. V. de Miranda, Int. J. Hydrogen Energy., 2020, 45(8), 5297-5308. https://doi.org/10.1016/j.ijhydene.2019.04.075
  10. X. F. Ye, S. R. Wang, J. Zhou, F. R. Zeng, H. W. Nie, T. L. Wen, J. Power Sources., 2011, 196(13), 5499-5502. https://doi.org/10.1016/j.jpowsour.2010.09.053
  11. S. Wang, M. Zheng, M. Li, X. Wu, C. Xia, J. Mater. Chem. A., 2016, 4(15), 5745-5754. https://doi.org/10.1039/C6TA00732E
  12. A. Hornes, G. Munuera, A. Fuerte, M. J. Escudero, L. Daza, A. Martinez-Arias, J. Power Sources, 2011, 196(9), 4218-4225. https://doi.org/10.1016/j.jpowsour.2010.10.042
  13. R. D. Schmidt-Whitley, M. Martinez-Clemente, A. Revcolevschi, J. Cryst. Growth., 1974, 23(2), 113-120. https://doi.org/10.1016/0022-0248(74)90110-9
  14. S. J. Skinner, M. A. Laguna-Bercero, Advanced Inorganic Materials for Solid Oxide Fuel Cells., 2011, 33-94.
  15. H. He, J. M. Vohs, R. J. Gorte, J. Electrochem. Soc., 2003, 150(11), A1470. https://doi.org/10.1149/1.1614268
  16. W. Li, B. Guan, M. Liu, B. Wei, X. Zhu, Z. Wang, Z. Lu, J. Solid State Electrochem., 2018, 22(6), 1735-1743. https://doi.org/10.1007/s10008-017-3876-9
  17. S. Islam, J. M. Hill, J. Power Sources., 2011, 196(11), 5091-5094. https://doi.org/10.1016/j.jpowsour.2011.01.087
  18. L. J. van der Pauw, Philips Res. Reports., 1958, 13(1), 1-9.
  19. M. Jamshidijam, R. V. Mangalaraja, A. AkbariFakhrabadi, S. Ananthakumar, S. H. Chan, Powder Technol., 2014, 253, 304-310. https://doi.org/10.1016/j.powtec.2013.10.032
  20. K. Kumar, N. K. Singh, H. S. Park, O. Parkash, RSC Adv., 2016, 6(55), 49883-49890. https://doi.org/10.1039/c6ra08268h
  21. A. P. Young, C. M. Schwartz, J. Phys. Chem. Solids., 1969, 30(2), 249-252. https://doi.org/10.1016/0022-3697(69)90306-0
  22. A. Kromp, H. Geisler, A. Weber, E. Ivers-Tiffee, Electrochim. Acta., 2013, 106, 418-424. https://doi.org/10.1016/j.electacta.2013.05.136
  23. R. Barfod, M. Mogensen, T. Klemenso, A. Hagen, Y. L. Liu, P. Vang Hendriksen, J. Electrochem. Soc., 2007, 154(4), B371. https://doi.org/10.1149/1.2433311
  24. J. W. Erning, T. Hauber, U. Stimming, K. Wippermann, J. Power Sources., 1996, 61(1-2), 205-211. https://doi.org/10.1016/S0378-7753(96)02358-0
  25. E. Siebert, A. Hammouche, M. Kleitz, Electrochim. Acta., 1995, 40(11), 1741-1753. https://doi.org/10.1016/0013-4686(94)00361-4
  26. K. M. Ong, W. Y. Lee, J. Hanna, A. F. Ghoniem, Int. J. Hydrogen Energy., 2016, 41(21), 9035-9047. https://doi.org/10.1016/j.ijhydene.2016.03.107
  27. V. M. Janardhanan, O. Deutschmann, Z. Phys. Chem., 2007, 221(4), 443-478. https://doi.org/10.1524/zpch.2007.221.4.443
  28. O. Costa-Nunes, R. J. Gorte, J. M. Vohs, J. Power Sources, 2005, 141(2), 241-249. https://doi.org/10.1016/j.jpowsour.2004.09.022
  29. H. Kim, C. Lu, W. L. Worrell, J. M. Vohs, R. J. Gorte, J. Electrochem. Soc., 2002, 149(3), A247. https://doi.org/10.1149/1.1445170
  30. T. Klemenso, C. C. Appel, M. Mogensen, Electrochem. Solid-State Lett., 2006, 9(9), A403-A407. https://doi.org/10.1149/1.2214303
  31. H. Yokokawa, H. Tu, B. Iwanschitz, A. Mai, J. Power Sources, 2008, 182(2), 400-412. https://doi.org/10.1016/j.jpowsour.2008.02.016