• Title/Summary/Keyword: Carbon Absorption

Search Result 825, Processing Time 0.027 seconds

Evaluating Cross-correlation of GOSAT CO2 Concentration with MODIS NDVI Patterns in North-East Asia (동북아시아에서 GOSAT CO2와 MODIS 식생지수 분포의 상관성 분석)

  • Choi, Jin Ho;Joo, Seung Min;Um, Jung Sup
    • Spatial Information Research
    • /
    • v.21 no.5
    • /
    • pp.15-22
    • /
    • 2013
  • The purpose of this work is to investigate correlation between $CO_2$ concentration and NDVI (Normalized Difference Vegetation Index) in North East Asia. Geographically weighted regression techniques were used to evaluate the spatial relationships between GOSAT (Greenhouse Observing SATellite) $CO_2$ measurement and MODIS (Moderate Resolution Imaging Spectroradiometer) vegetation index. The results reveals that $CO_2$ concentration to be negatively associated with NDVI. The analysis of Global Morans' I index and Anselin Local Morasn's I showed spatial autocorrelation between the overall spatial pattern of $CO_2$ and NDVI. Ultimately, there were clustered patterns in both data sets. The results show that carbon dioxide concentration shows non-random distribution patterns in relation to NDVI clusters, which proves that intense development activities such as deforestation are influencing carbon dioxide emission across the area of analysis. However, as the concentration of carbon dioxide varies depending on a variety of factors such as artificial sources, plant respiration, and the absorption and discharge of the ocean, follow-up studies are required to evaluate the correlations among more related variables.

Interfacial Evaluation and Nondestructive Damage Sensing of Carbon Fiber Reinforced Epoxy-AT-PEI Composites using Micromechanical Test and Electrical Resistance Measurement (Micromechanical 시험법과 전기저항 측정을 이용한 탄소섬유 강화 Epoxy-AT-PEI복합재료의 비파괴적 손상 감지능 및 계면물성 평가)

  • Joung-Man Park;Dae-Sik Kim;Jin-Woo Kong;Minyoung Kim;Wonho Kim
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.62-67
    • /
    • 2003
  • Interfacial properties and damage sensing for the carbon fiber/epoxy-amine terminated (AT)-polyetherimide (PEI) composite were performed using microdroplet test and electrical resistance measurements. As AT-PEI content increased, the fracture toughness of epoxy-AT-PEI matrix increased, and interfacial shear strength (IFSS) increased due to the improved fracture toughness by energy absorption mechanisms of AT-PEI phase. The microdroplet in the carbon fiber/neat epoxy composite showed brittle microfailure mode. At 15 phr AT-PEI content ductile microfailure mode appeared because of improved fracture toughness. After curing, the change in electrical resistance $\Delta\textrm{R}$) with increasing AT-PEI content increased gradually because of thermal shrinkage. Under cyclic stress, in the neat epoxy case the reaching time until same stress was faster and their slope was higher than those of 15 phr AT-PEI. The result obtained from electrical resistance measurements under curing process and reversible stress/strain was correspondence well with matrix toughness properties.

A Study on Removal of Dissolved Organic Matter and Phosphorus in Eutrophic Lake by Coagulation Process Using Powdered Activated Carbon (분말활성탄 응집침전 공정을 이용한 부영양화 호소수의 용존 유기물 및 인의 제거 연구)

  • Cho, Kyung Chul;Lee, Min Hee;Park, Jung Hwan;Jung, Jongtai
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.629-635
    • /
    • 2012
  • This study was conducted to evaluate the removal behaviors of DOM(dissolved organic matter) and phosphorus in eutrophic lake water by coagulation process with PAC(powdered activated carbon). It was observed that the removal characteristic of soluble matter was different from that of dissolved one, and the removal of DOM was effected by both pH and coagulant dosage. It was founded that PAC could increase the removal efficiency by an adsorption of DOM in coagulation process. A formation of soluble and colloidal matters resulted in the degradation of phosphorus removal efficiency in a chemical precipitation process. The phosphorus removal efficiency could be enhanced by an absorption of colloidal matter and dissolved complex with PAC addition. In addition, the PAC addition caused the increase of floc density in coagulation process, that led to the rise of sedimentation rate, and resulted in a significant improvement of solid-liquid separation efficiency.

Interaction between RuO2 and Carbon Nanotubes - Photoemission and X-ray Absorption Study

  • Lee, Seung-Youb;Kim, Yoo-Seok;Jeon, Chel-Ho;Ihm, Kyu-Wook;Kang, Tai-Hee;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.567-567
    • /
    • 2012
  • Since the carbon nanotubes (CNTs) have extraordinary material properties, many researchers are trying to make a practical application in various fields [1]. In particular, the high surface area of CNTs was fascinated for nano-template on the catalytic system. $RuO_2$ coated CNTs are useful functional nano-composites in many applications, including super capacitors, fuel cells, biosensors, and field emitters. However, the research of interaction between CNTs and $RuO_2$ was not satisfied with various fields [2]. In this study, we will introduce the change of chemical and electrical state of $RuO_2$/CNTs at different temperatures by synchrotron radiation photoemission spectroscopy (SRPES). The t-MWCNTs used in this experiment were grown on the Ni/TiN/Si substrates by chemical vapor deposition. $RuO_2$ of 4-20 nm in thickness was deposited on the t-MWNTs by sputter. The SRPES measurements were carried out at the 4B1 beamline of the Pohang Accelerator Laboratory in Korea. The result of XPS measurement indicates that the deposited $RuO_2$ on the CNTs was reduced into pure Ru at above $300^{\circ}C$. And we confirmed that the effective work function of $RuO_2$/CNTs was decreased with increasing temperature.

  • PDF

Preparation of Co-ACFs/TiO2 composites and its photodegradation of methylene blue (Co-ACFs/TiO2 복합체의 제조 및 그의 메틸렌블루의 광분해)

  • Oh, Won-Chun;Kwon, Ho-Jung;Chen, Ming-Liang;Zhang, Feng-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3031-3038
    • /
    • 2009
  • Cobalt-loaded activated carbon fibers (ACFs) supported titanium dioxide ($TiO_2$) photocatalyst was developed by sol-gel method. The Co-ACFs/$TiO_2$ photocatalyst were characterized by scanning electron microscope (SEM), X.ray diffraction patterns (XRD), energy dispersive X.ray analysis (EDX) and UV-vis absorption spectroscopy. Decomposition efficiency of methylene blue (MB) solution by Co-ACFs/$TiO_2$ photocatalyst reached almost 100% under 300 min reaction. The MB molecules in the bulk solutions were supposed to be condensed around $TiO_2$ particles by adsorption of ACFs. Therefore, the photocatalyst possesses the combined effect of adsorption by activated carbon fibers and photocatalytic reactivity of $TiO_2$ on MB degradation. Due to the cobalt has electron transition effece, thus improved the photodegradation of MB solution.

Nutritional Quality and Physicochemical Characteristics of Defatted Bovine Liver Treated by Supercritical Carbon Dioxide and Organic Solvent

  • Kang, Sung-Won;Kim, Hye-Min;Rahman, M. Shafiur;Kim, Ah-Na;Yang, Han-Sul;Choi, Sung-Gil
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.29-37
    • /
    • 2017
  • Defatted bovine liver (DBL) is a potential source of protein and minerals. Supercritical carbon dioxide ($SC-CO_2$) and a traditional organic solvent method were used to remove lipid from bovine liver, and the quality characteristics of a control bovine liver (CBL), bovine liver defatted by $SC-CO_2$ ($DBLSC-CO_2$) at different pressures, and bovine liver defatted by organic solvent (DBL-OS) were compared. The $DBLSC-CO_2$ samples had significantly higher (p<0.05) protein, amino acid, carbohydrate, and fiber contents than CBL and DBL-OS. There was a higher yield of lipid from CBL when using $SC-CO_2$ than the organic solvent method. SDS-PAGE analysis demonstrated that the CBL and $DBLSC-CO_2$ had protein bands of a similar intensity and area, whereas DBL-OS appeared extremely poor bands or no bands due to the degradation of proteins, particularly in the 50 to 75 kDa and 20 to 25 kDa molecular weight ranges. In addition, $DBLSC-CO_2$ was shown to have superior functional properties in terms of total soluble content, water and oil absorption, and foaming and emulsification properties. Therefore, $SC-CO_2$ treatment offers a nutritionally and environmentally friendly approach for the removal of lipid from high protein food sources. In addition, $SC-CO_2$ may be a better substitute of traditional organic solvent extraction for producing more stable and high quality foods with high-protein, fat-free, and low calorie contents.

Study on the Axial Crushing Behaviors of UD Kevlar/Epoxy and Carbon-Kevlar/Epoxy Composite Tubes (단방향 케블라/에폭시, 탄소-케블라/에폭시 복합재 튜브의 축방향 압괴 거동에 대한 연구)

  • Kim, Hyung-Uk;Kim, Jung-Seok;Jung, Hyun-Seung;Yoon, Hyuk-Jin;Kwon, Tae-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.271-277
    • /
    • 2010
  • In this paper, a numerical model for a Kevlar/Epoxy and Carbon-Kevlar/Epoxy tube used as an energy absorbing component has been developed and then results have been verified through experiment. The 2D shell element and Chang-Chang failure criterion of LS-DYNA that is commercial explicit FE code was used. Mechanical material properties for the model were obtained by material testing in advance. The numerical results were compared with quasi-static test results under axial compressive loading at 10mm/min. From the results, in the case of the Kevlar/Epoxy tube, load-crushed displacement curves were very close to the experiments and SEA (specific energy absorption) shows a good agreement with experimental one within less than 6%. However, the Carbon-Kevlar/Epoxy tube shows some differences with the experimental results.

Resourcing of Methane in the Biogas Using Membrane Process (분리막을 이용한 바이오가스의 메탄 자원화)

  • Park, Young G.;Yang, Youngsun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.406-414
    • /
    • 2014
  • Biogas is a gaseous mixture produced from microbial digestion of organic materials in the absence of oxygen. Raw biogas, depending upon organic materials, digestion time and process conditions, contains about 45-75% methane, 30-50% carbon dioxide, 0.3% of hydrogen sulfide gas and fraction of water vapor. To achieve the standard composition of the biogas the treatment techniques like absorption or membrane separation was performed for the resourcing of biogas. In this paper the experimental results of the methane purification in simulated biogas mixture consisted of methane, carbon dioxide and hydrogen sulfide were presented. The composite membrane is manufactured within polysulfone in order to increase the separation performances for the gaseous mixtures of $CO_2$ and $CH_4$ which are main components of the biogas. The effects of feed pressures and mixed gas on the separation of $CO_2-CH_4$ by membrane are investigated. Chelate chemical was utilized to treat the purification of methane from the $H_2S$ concentration of 0.3%.

Synthesis of Azo based Disperse Dyes for Dyeing Polyester Fiber in Supercritical Carbon Dioxide (초임계 유체 염색용 아조계 분산염료 합성 및 PET 섬유에 대한 염색 특성 연구)

  • Shin, Seung-Rim;An, Kyoung-Lyong;Lee, Sunhye;Lee, Seung Eun;Ko, Eunhee;Kim, Changil;Jun, Kun
    • Textile Coloration and Finishing
    • /
    • v.31 no.3
    • /
    • pp.135-146
    • /
    • 2019
  • A series of azo based disperse dyes were synthesized and applied to polyester(PET) fiber in supercritical carbon dioxide($ScCO_2$). Various aniline derivatives were used as diazo component and coupled with glycine ethylester or carbonic acid ethylester derivatives to give azo based disperse dyes. Depending on the various diazo substituents, absorption maxima varied from 415 to 529nm in acetone. Dyeing in $ScCO_2$ was carried out at $120^{\circ}C$ and 250bar pressure for 2hrs with 0.5% o.w.f. of dye concentration. Dyed PET fiber had excellent brightness and good light, washing and perspiration(acid/alkali) fastness properties.

Green Synthesis of Multifunctional Carbon Nanodots and Their Applications as a Smart Nanothermometer and Cr(VI) Ions Sensor

  • Li, Lu;Shao, Congying;Wu, Qian;Wang, Yunjian;Liu, Mingzhu
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850147.1-1850147.14
    • /
    • 2018
  • In this work, water-soluble and blue-emitting carbon nanodots (CDs) were synthesized from apple peels for the first time via one-step hydrothermal method. The synthetic route is facile, green, economical and viable. The as-prepared CDs were characterized thoroughly by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR), X-ray photoelectron (XPS), fluorescence and UV-Vis absorption spectroscopy in terms of their morphology, surface functional groups and optical properties. The results show that these CDs possessed ultrasmall size, good dispersivity, and high tolerance to pH, ionic strength and continuous UV irradiation. Significantly, the CDs had fast and reversible response towards temperature, and the accurate linear relationship between fluorescence intensity and temperature was used to design a novel nanothermometer in a broad temperature range from 5 to $65^{\circ}C$ facilely. In addition, the fluorescence intensity of CDs was observed to be quenched immediately by Cr(VI) ions based on the inner filter effect. A low-cost Cr(VI) ions sensor was proposed employing CDs as fluorescent probe, and it displayed a wide linear range from 0.5 to $200{\mu}M$ with a detection limit of $0.73{\mu}M$. The practicability of the developed Cr(VI) sensor for real water sample assay was also validated with satisfactory recoveries.