• 제목/요약/키워드: Carbon 13 NMR

검색결과 132건 처리시간 0.023초

$^{13}$C NMR Study of Segmental Motions of n-Heptane in Neat Liquid

  • Min, Buem-Chan;Chang, Sei-Hun;Shin, Kook-Joe;Lee, Jo-Woong
    • Bulletin of the Korean Chemical Society
    • /
    • 제6권6호
    • /
    • pp.354-358
    • /
    • 1985
  • Carbon-13 nuclear spin-lattice relaxation times have been measured over the range of temperature from 213K to 353K for carbons in n-heptane in neat liquid. The experimental data have been analyzed to obtain informations of segmental motions in the chain polymers by employing a model which describes jumps between several discrete states with different lifetimes. The overall reorientation of the molecule is assumed to be isotropic rotational diffusion. From the above analysis the activation energies of each C-C bond reorientation as well as the overall reorientation have been obtained through the Arrhenius-type temperature dependence.

토양 휴믹물질의 화학적.분광학적 특성에 따른 페난트린 흡착상수와의 상관성 규명에 대한 연구 (Chemical and Spectroscopic Characterization of Soil Humic and Fulvic Acids and Sorption Coefficient of Phenanthrene: A Correlation Study)

  • 이두희;이승식;신현상
    • 대한환경공학회지
    • /
    • 제30권11호
    • /
    • pp.1067-1074
    • /
    • 2008
  • 본 연구에서는 다양한 토양 휴믹산(HA) 및 풀빅산(FA)을 대상으로 형광소광법을 이용한 페난트린(PHE)과의 유기탄소 표준화 분배계수(Koc)를 도출하고, 각 휴믹물질의 화학적 및 분광학적 물질특성과 PHE에 대한 Koc와의 상관성을 조사하였다. 휴믹물질은 한라산 토양을 포함한 국내 5개 지역의 토양과 국제휴믹학회(IHSS) 표준토양 및 이탄에서 추출한 HA와 FA 그리고 Aldrich사에서 구입한 HA 등 총 16종을 사용하였다. HA와 FA의 물질특성은 원소성분비와 254 nm에서의 UV 흡광도 및 $^{13}$C NMR을 이용한 탄소형태별 분포 등을 조사하였다. 본 실험조건([PHE]/[HS] = 0.02$\sim$0.2(mg/L)/(mg-OC/L), pH 6)에서의 토양 휴믹물질의 Koc 값 ($\times$10$^4$, L/kg C)은 1.48$\sim$8.65의 범위이었으며, HA가 FA에 대하여 높게 나타났다(3.13$\sim$8.65 vs 1.48$\sim$2.48). log Koc 값과 물질특성과의 상관성 분석 결과, Koc값은 분자극성도((O+N)/C) 및 산소-포함 탄소 함량비(I$_{C-O}$/I$_{C-H,C}$) 등과는 강한 음(-)의 상관성을 보였으며, 254 nm에서의 UV 흡광도([ABS]$_{254}$)와 방향족탄소함량(C$_{Ar-H,C}$, $\sum$C$_{Ar}$/$\sum$C$_{Alk}$) 등과는 강한 양(+)의 상관성을 보였다. 이로부터 페난트린과 같은 소수성유기화합물과의 결합능력은 휴믹물질의 분자극성도가 낮을수록 그리고 분자의 불포화도와 방향족성이 높을수록 증가함을 확인하였다.

NMR Relaxation Study of Segmental Motions in Polymer-n-Alkanes

  • Chung Jeong Yong;Lee Jo Woong;Park Hyungsuk;Chang Taihyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권3호
    • /
    • pp.296-306
    • /
    • 1992
  • $^{13}C$ spin-lattice relaxation times were measured for n-alkanes of moderate chain length, ranging from n-octane to n-dodecane, under the condition of proton broad-band decoupling within the temperature range of 248-318 K in order to gain some insight into basic features of segmental motions occurring in long chain ploymeric molecules. The NOE data showed that except for methyl carbon-13 dipole-dipole interactions between $^{13}C$ and directly bonded $^1H$ provide the major relaxation pathway, and we have analyzed the observed $T_1data$ on the basis of the internal rotational diffusion theory by Wallach and the conformational jump theory by London and Avitabile. The results show that the internal rotational diffusion constants about C-C bonds in the alkane backbone are all within the range of $10^9\;-10^10\;sec^{-1}$ in magnitude while the mean lifetimes for rotational isomers are all of the order of $10^{-11}\;-10^{-10}$ sec. Analysis by the L-A theory predicts that activation energies for conformational interconversion between gauche and trans form gradually increase as we move from the chain end toward the central C-C bond and they are within the range of 2-4 kcal/mol for all the compounds investigated.

식용식물의 항산화 효과 검색과 산초의 항산화 성분 (Further Screening for Antioxidant Activity of Vegetable Plants and Its Active Principles from Zanthoxylum schinifolum)

  • Mun, Sook-Im;Ryu, Hong-Soo;Lee, Hee-Jung;Park, Jae-Sue
    • 한국식품영양과학회지
    • /
    • 제23권3호
    • /
    • pp.466-471
    • /
    • 1994
  • The antioxidant activity of methanol extracts of thirty plants was tested using the methol of 1, 1-diphenyl-2-pi-cryl hydrazyl (DPPH) reactivity. Four methanol extracts from Zingiber officinale, Piper nigrum , Zanthoxylum schinifolium and Capsocum annuum were found to be the most effective on DPPH radical scavenging activity. The next effective ones were Perilla frutescens , Sedium sarmentosum , Raphnus sativas, aArctium lappa, Beta vulgaris. Brassica oleracea var. Acephala, bBrassica juncea inorder, and the others did not show a considerable activity. The methanol extract obtained from the seed coats of Zanthoxylum schinifolium was fractinated with several sovlents. The interphase materials exhibited the strongest antioxidant activity and was further purified by silica gel and Sephadex LH-20 column chormatography. Two active principles were isolated and identified as quercetin -3-O-$\alpha$-L-rhamonopyranoiside(quercitrin) and quercetin 3-O-$\alpha$-D-galactopyranoside (hyperoside) by ultraviolet(UV), proton nuclear magetic resonance (1H-NMR) and carbon nuclear magnetic resonance (13C-NMR). Its antioxidative activity was a little higher that that of L-ascorbic acid.

  • PDF

Determination of the Solution Structure of Malonyl-CoA by Two-Dimensional Nuclear Magnetic Resonance Spectroscopy and Dynamical Simulated Annealing Calculations

  • Jung, Jin-Won;An, Jae-Hyung;Kim, Yu-Sam;Bang, Eun-Jung;Lee, Weon-Tae
    • BMB Reports
    • /
    • 제32권3호
    • /
    • pp.288-293
    • /
    • 1999
  • In order to understand the initial interaction of the substrates malonate, ATP, and CoA with malonyl-CoA synthetase, the catalytic product malonyl-CoA was characterized by NMR spectroscopy and molecular modeling. To assign proton and carbon chemical shifts, two-dimensional $^1H-^1H$ DQF-COSY and $^1H-^{13}C$ HMBC experiments were used. The structure of malonyl-CoA in the solution phase was determined based on distance constraints from NOESY and ROESY spectra. The structures were well-converged around the pantetheine region with the pairwise RMSD value of 0.08 nm. The solution structure exhibited a compact folded conformation with intramolecular hydrogen bonds among its carbonyl and hydroxyl groups. These findings will help us to understand the initial interaction of malonate and CoA with malonyl-CoA synthetase.

  • PDF

Structural Characterization of Non-reducing Oligosaccharide Produced by Arthrobacter crystallopoietes N-08

  • Bae, Bum-Sun;Shin, Kwang-Soon;Lee, Ho
    • Food Science and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.519-525
    • /
    • 2009
  • A bacterial strain (Strain N-08) capable of extracellularly producing high level of non-reducing oligosaccharide (NR-OS) isolated from soil. The strain was identified phylogenetically by 16S rDNA sequence analysis and found to be very close to Arthrobacter crystallopoietes. The high production of NR-OS was observed in the basal culture medium containing maltose as a sole carbon source. The NR-OS in culture supernatant was purified by glucoamylase treatment and Dowex-1 (OH.) ion exchange chromatography and its structure was characterized. This oligosaccharide consisted of only glucose. Methylation analysis indicated that this fraction was composed mainly of non-reducing terminal glucopyranoside. Matrixassisted laser-induced/ionization time-of-flight (MALDI-TOF) and electrospray ionization-mass spectrometry (ESI-MS)/MS analyses suggested that this oligosaccharide comprised non-reducing disaccharide unit with 1,1-glucosidic linkage. When this disaccharide was analyzed by $^1H$-NMR and $^{13}C$-NMR, it gave the same signals with $\alpha$-D-glucopyranosyl-(1,1)-$\alpha$-Dglucopyranoside. These results indicated that the NR-OS produced by A. crystallopoietes N-08 was ${\alpha}1$,${\alpha}1$-trehalose. This is the first report of the trehalose which can be produced directly from maltose by A. crystallopoietes N-08.

A Numerical Study on Coal Devolatilization of Bituminous Coal Using CPD Model

  • 김량균;이병화;전창환;장용준;송주헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2898-2903
    • /
    • 2008
  • The coal considerably is the energy resource which is important with the new remarking energy resource. The coal conversion has two processes which are coal devolatilization and char oxidation. Coal devolatilization is important because it describes up to 70% weight loss and has been shown that nitrogen contribute 60 to 80% of the total NOx produced. The chemical percolation devolatilization(CPD) model is used here to describe coal devolatilization. The model was developed to describe coal devolatilization behavior of rapidly heated coal based on characteristics of the chemical structure of the parent coal. This paper describes CPD model in detail and makes an analysis of Shenhua coal(bituminous) which is used calculated 13-C NMR(carbon-nuclear magnetic resonance).

  • PDF

$^{13}C-^{1}H$ Coupling Constant as a Criterion for the Presence of $\pi$ Bridging in Substituted 9-Benzonorbornenyl Cation

  • Gweon-Young Ryu;Jung-Hyu Shin
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권5호
    • /
    • pp.546-548
    • /
    • 1993
  • The discrete structure of substituted 9-benzonorbornenyl cation 3a and 3c was studied using the empirical ${\Delta}$J equation which was developed by Kelly and coworker$^5$. The ${\Delta}$J values of substituted 9-benzonorbornenyl cations were obtained from p-methyl-6,7-dimethyl benzonorbornen-9-yl (3a) and 9-methyl-6,7-dimethyl benzonorbonen-9-yl (3c) cations under stable ion conditions, and were compared with those of the corresponding ketone analog; these cations were generated by dissolving the corresponding carbinols in superacid at -120$^{\circ}$C and the nmr spectra taken at -60$^{\circ}$C~-90$^{\circ}$C. The ${\Delta}$J values are 8.7 Hz for the bridgehead carbons in cation 3c and 3.1 Hz for cation 3b. The ${\Delta}$J values at C5,8 in fused benzene ring are 14.3 Hz for cation 3c and 8.7 Hz for cation 3a. The excellent correlation of the ${\Delta}$J values with 1$^9F$ chemical shifts of p-fluorophenyl-6,7-dimethylbenzonorbornenyl cation (3d) indicate that ${\Delta}$J value is a reliable probe to charge density at adjacent cationic carbon. These NMR parameters strongly support that the symmetrically ${\pi}$-bridged nonclassical structure (type 2) of substituted 9-benzonorbornenyl cations in stable ion conditions.

Chemical Structural Features of Humic-like Substances (HULIS) in Urban Atmospheric Aerosols Collected from Central Tokyo with Special Reference to Nuclear Magnetic Resonance Spectra

  • Katsumi, Naoya;Miyake, Shuhei;Okochi, Hiroshi
    • Asian Journal of Atmospheric Environment
    • /
    • 제12권2호
    • /
    • pp.153-164
    • /
    • 2018
  • We measured $^1H$ and $^{13}C$ nuclear magnetic resonance (NMR) spectra of Humic-like substances (HULIS) in urban atmospheric aerosols isolated by diethylaminoethyl (DEAE) and hydrophilic-lipophilic balance (HLB) resin to characterize their chemical structure. HULIS isolated by DEAE resin were characterized by relatively high contents of aromatic protons and relatively low contents of aliphatic protons in comparison with HULIS isolated by HLB resin, while the contents of protons bound to oxygenated aliphatic carbon atoms were similar. These results were consistent with the results of the $^{13}C$ NMR analysis and indicate that hydrophobic components were more selectively adsorbed onto HLB, while DEAE resins selectively retained aromatic carboxylic acids. Furthermore, we demonstrated that the chemical structural features of HULIS were significantly different between spring and summer samples and that these disparities were reflective of their different sources. The estimated concentrations of HULIS in spring were found to be regulated by vehicle emissions and pollen dispersion, while the behavior of HULIS in summer was similar to photochemical oxidant and nitrogen dioxide concentrations. The proportion of aliphatic protons for summer samples was higher than that for spring samples, while the proportion of aromatic protons for summer samples was lower than that for spring samples. These seasonal changes of the chemical structure may also involve in their functional expression in the atmosphere.

Isolation and Identification of Antifungal Compounds from $Bacillus$ $subtilis$ C9 Inhibiting the Growth of Plant Pathogenic Fungi

  • Islam, Md. Rezuanul;Jeong, Yong-Tae;Lee, Yong-Se;Song, Chi-Hyun
    • Mycobiology
    • /
    • 제40권1호
    • /
    • pp.59-65
    • /
    • 2012
  • Antagonistic microorganisms against $Rhizoctonia$ $solani$ were isolated and their antifungal activities were investigated. Two hundred sixteen bacterial isolates were isolated from various soil samples and 19 isolates were found to antagonize the selected plant pathogenic fungi with varying degrees. Among them, isolate C9 was selected as an antagonistic microorganism with potential for use in further studies. Treatment with the selected isolate C9 resulted in significantly reduced incidence of stem-segment colonization by $R.$ $solani$ AG2-2(IV) in Zoysia grass and enhanced growth of grass. Through its biochemical, physiological, and 16S rDNA characteristics, the selected bacterium was identified as $Bacillus$ $subtilis$ subsp. $subtilis$. Mannitol (1%) and soytone (1%) were found to be the best carbon and nitrogen sources, respectively, for use in antibiotic production. An antibiotic compound, designated as DG4, was separated and purified from ethyl acetate extract of the culture broth of isolate C9. On the basis of spectral data, including proton nuclear magneric resonance ($^1H$ NMR), carbon nuclear magneric resonance ($^{13}C$ NMR), and mass analyses, its chemical structure was established as a stereoisomer of acetylbutanediol. Application of the ethyl acetate extract of isolate C9 to several plant pathogens resulted in dose-dependent inhibition. Treatment with the purified compound (an isomer of acetylbuanediol) resulted in significantly inhibited growth of tested pathogens. The cell free culture supernatant of isolate C9 showed a chitinase effect on chitin medium. Results from the present study demonstrated the significant potential of the purified compound from isolate C9 for use as a biocontrol agent as well as a plant growth promoter with the ability to trigger induced systemic resistance of plants.