• Title/Summary/Keyword: Carbody

Search Result 269, Processing Time 0.028 seconds

Study on the Effect of the Sound Transmission Coefficient of a Gangway on the Train Running in Tunnel (갱웨이의 음향투과손실치가 터널주행중 전동차의 실내소음에 미치는 영향)

  • Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1656-1660
    • /
    • 2008
  • Internal noise level of a train running in tunnel is influenced by sound transmission coefficients of floor, side door, window and gangway as well as by the sound power levels of major noise sources. The structure of a gangway should be strong enough for the safety of passengers while it should be flexible enough for the movement of a train in curves. Due to this the sound transmission coefficients of gangways are relatively low compared to those of carbody structure. The effect of the sound transmission coefficient of the gangway is studied in this paper in regards to the existence of end doors.

  • PDF

Design Review for suspension system of magnetically levitated vehicle (자기부상차량 현가시스템 설계에 대한 고찰)

  • Lee, Nam-Jin;Yang, Bang-Sub;Kim, Chul-Guen
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.364-371
    • /
    • 2008
  • In general Maglev (magnetically levitated vehicle) has about 4 or 5 bogies per one vehicle to improve stability of electromagnetic suspension and 4 air-spring per one bogie are to be equipped to prevent form excessive yawing and pitching motion of bogie. 3 leveling valve per one vehcile will be applied to control the height of carbody. This kind of vehicle is on the design stage, and design review will be carried out before manufacture. The suspension system of Maglev consists of 16 of air-spring, auxiliray reservoir and orifice, 3 leveling valve, which are different composition comparative to conventional rolling stock. To improve operational reliability of vehicle, additional ventilation valve will be equipped with airspring. This kind of new design concept requires fundamental design review. In this study, suspension systems of Maglev will be built as mathematical model. Then designed suspension system will be reviewed in view of various points through proposed suspension simulation.

  • PDF

Analysis of the acceleration measured on Korea and France high speed railways using UIC518 code (UIC518 방법에 의한 국내 및 프랑스 고속철도 차량 진동가속도 분석)

  • Choi, Il-Yoon;Kim, Nam Po;Lee, Jun S;Lim, Jihoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8516-8524
    • /
    • 2015
  • Track irregularities can be evaluated not only directly by track inspection but also indirectly by measurement of carbody accelerations and many researches are being conducted. Carbody accelerations were measured on the Kyeongbu high speed railway and France high speed line to investigate the situation of the track maintenance at Korea high speed line by using indirect method. Digital signal processing for the measured acceleration data were conducted according to UIC518 code. Since the vehicle speed affects the car body acceleration, the lateral and vertical acceleration of the car body were classified according to the vehicle speed and the distribution characteristics of these acceleration were investigated and evaluated by UIC518 criteria. Finally, the running behavior of KTX on Korea high speed railway were compared with that on France. Distribution characteristics of these acceleration were evaluated and discussed in terms of the track maintenance in Korea high speed line.

A study on the Vibration Reduction of the Commercial High-speed Train (운영 중인 고속열차의 진동저감에 관한 연구)

  • Jeon, Chang-Sung;Choi, Sunghoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.697-704
    • /
    • 2017
  • This study was carried out to investigate and alleviate the vibration problem of commercial high-speed trains. First, the measurement of the carbody vibration was performed, in order to determine the vibration level of the high-speed train. The measurement result showed that the vibration level of the driver cab was higher than that of the passenger car and that the vibration became bigger toward the trailing end of the train. The vertical vibration of the driver cab and passenger car was larger than the transverse vibration, and the maximum value of the vibration in the ballast section was larger than that in the concrete section. A dynamic analysis was carried out to improve the vibration of the KTX-Sancheon train. The results of the analysis showed that it is necessary to reduce the vibration of the driver cab and both ends of the passenger cars. To reduce the vibration of the driver cab, it was recommended that the stiffness of the secondary coil spring be reduced and the damping coefficient of the secondary vertical damper be increased. It was found that the failure of the suspension system could be the origin of the vibration problem of the high-speed train. The proper management of wheel wear plays an important role in the improvement of the operation efficiency and reduction of the carbody vibration of high-speed trains, and research is underway to change the present wheel profile to increase the mileage between wheel turning.

Conceptual Design on Doorstep Equipments Used for Low and High Level Railway Platforms (저상 및 고상 철도 승강장 겸용 승강문 스텝 개념설계)

  • Park, Min-Heung;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3882-3888
    • /
    • 2012
  • In order to operate trains both mainline railroad platform and metropolitan subway line platform, it is necessary to develop the doorstep equipment of the rolling stock regardless of low(500mm, mainline) and high level platforms(1,135mm, metropolitan subway line) because of the requisite door safety system. In this study, two different types of platforms were examined. On closer examination, it seems that the conceptual design is suitable for telescopic sliding type doorstep equipment to minimize damage to the carbody underframe of railway vehicles and can also minimize the variation of the distance between the railway platform. Furthermore, the operation process and control flowchart of doorstep equipments by stages are proposed by various performance requirements.

Dynamic analysis of eddy current brake system for design evaluation (와전류 제동장치 설계검증을 위한 동역학적 해석)

  • Chung, Kyung-Ryul;Kim, Kyung-Taek;Paik, Jin-Sung;Benker, T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.110-115
    • /
    • 2002
  • In this paper, the results of an analysis of the dynamic behavior of the eddy current brake(ECB) system are presented. The measured irregularity of the track in Korean high speed line and the track irregularity given by ERRI(high level) were used for simulation. The wheel-rail profile combination were analyzed with different rail gauges. A model of the bogie with an substitute body for the carbody was implemented in the Multi-body-Simulation Program SIMPACK. The ECB frame was modelled both as flexible body and as rigid body. Four different driving conditions were analyzed. In this study dynamic behavior in general were performed to evaluate the design of eddy current brake system and specially the effect of damper was also studied. A comparison of simulations with and without damper shows that the damper have most effect for lower speed. The simulation results will be verified by comparison with measured data from on line test and also used for improving design.

  • PDF

Compressive Strength Restoration Evaluation of Sandwich Composite Laminates Repaired by Scarf Method (패치 보수된 샌드위치 복합재 적층판의 압축시 강도회복 평가)

  • Kim, Jung-Seok;Yoon, Hyuk-Jin;Kim, Seung-Cheol;Seo, Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.110-114
    • /
    • 2009
  • This study is for the evaluation of compressive strength restoration of sandwich composite laminates with adhesively bonded scarf patches. It was used in this study that the sandwich composite laminate with an aluminum honeycomb core and CF1263 woven fabric carbon/epoxy faces was applied to the car body structure for Korean tiling train. In this study, it was damaged by low velocity impact and repaired using scarf repair method. Then, the compressive strength restoration of assessed by compressive after impact (CAI) test. From the test, it could be known that the compressive strength was restored up to 72% by only scarf repair method and 91% applied by an extra ply over the undamaged one.

Development for Motion Evaluation of Tilting Simulator (틸팅 시뮬레이터의 운동판 설계에 관한 연구)

  • Song, Yong-Soo;Kim, Jung-Suk;Lee, Su-Gil;Han, Seong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2631-2633
    • /
    • 2004
  • This paper describes the construction of a half sphere screen driving tilting simulator that can perform six degree-of-freedom( DOF) motions simmulator to a tilting train. The mathematical equations of Tilting Train dynamics are first derived from the 6-DOF bicycle model and incorporated with the bogie. carbody, and suspension subsystems. The equations of motion are then programmed by visual C++ code. To achieve the simulator functions. a motion platform that is constructed by six electric-driven actuators is designed. and its kinetics/inverse kinetics analysis is also conducted. Driver operation signals such as carbady angle, accelerator. and tilting positions are measured to trigger the Tilting dynamics calculation and further actuate the cylinders by the motion platform control program. In addition. a digital PID controller is added to achieve the stable and accurate displacements of the motion platform. The experiments prove that the designed simulator is adequate in performing some special rail mad driving situations discussed in this paper.

  • PDF

Analysis of Interior Noise of KTX in Tunnel with Concreted Track (콘크리트 궤도 터널 내 KTX 차량의 실내소음 특성 분석)

  • Kim, Jae-Chul;Lee, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1037-1042
    • /
    • 2007
  • KTX trains show a high interior noise level in tunnel with concreted track at 300 km/h. Generally, the concreted track has higher sound emissions compared with ballasted track due to the reduced absorption and the major sources of interior noise for KTX are known as the aerodynamic noise and rolling noise. Therefore, It is necessary to find out noise source and noise components to affect interior noise in tunnel with concreted track. In this study, we measure the noise and vibration inside KTX in tunnel in order to find the cause of the interior noise of KTX. The analysis results show that the interior noise of KTX in tunnel with concreted track is increased sharply by a low frequency below 80 Hz. We know that the low frequency noise inside KTX in tunnel with concreted track is generated at the natural frequency of carbody by aerodynamic noise outside gangway and rolling noise. In order to reduce the noise level at 80 Hz, modification of mud-flap length between carbodys is suggested and the effect of noise reduction is examined in tunnel with concreted track.

Development of Design and Technology for Fuel cell Carbody with Composite Suitable to the Urban Transportation System (도심의 교통시스템에 적합한 복합소재의 연료전지 차체설계기술 개발)

  • Oh Kyung-Won;Lee Sang-Jin;Jeong Jong-Cheol;Park Mi-Yung;Cho Sea-Hyun;Mok Jai-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.434-439
    • /
    • 2005
  • In order to prevent the global warming, Korea has had a ratification to the Kyoto Protocol which is specified the air pollution level should be lower the condition of the year 1990 until the year 2012, in hence the traffic system produced mostly the air pollution has been faced to big change. According to the reinforcement of higher level for environmental condition, alternative way to the conventional traffic system is required, so that is fuel cell technology of commercialized R&D program used by hydrogen fuel, and further for the optimized high energy efficiency it has been considered the advanced development of traffic system used the conventional railroad system. But it is moreover expected the huge amount of initial investment, so at the current, next new traffic system is needed. This study is for the improvement of urban traffic system in domestic which should be seriously changed for environmental friendly through the reduction of air pollution by fuel gases of vehicle and human convenience to be easily approached. In hence it is proposed the development of superior high efficiency-'Fuel-cell Rubber-tired Tram' system manufactured by the composite car-body.

  • PDF