• 제목/요약/키워드: Car-body

검색결과 704건 처리시간 0.026초

차체 소재 다변화에 따른 체결 및 접합기술 (Mechanical fastening and joining technologies to using multi mixed materials of car body)

  • 김용;박기영;곽성복
    • Journal of Welding and Joining
    • /
    • 제33권3호
    • /
    • pp.12-18
    • /
    • 2015
  • The ultimate goal of developing body is revealed the "lightweight" at latest EuroCarBody conference 2012 and the most core technology is joining process to make lightweight car body design. Accordingly, in this study, the car body assembly line for the assembly process applies to any introduction, particularly in the assembly of aluminum alloy and composite materials applied by the process for the introductory approached. Process were largely classified by welding (laser, arc, resistance, and friction stir welding), bonding (epoxy bonding) and mechanical fastening (FDS, SPR, Bolting and clinching). Applications for each process issues in the case and the applicable award was presented, based on the absolute strength of the test specimens and joining characteristics for comparative analysis were summarized. Finally, through this paper, we would tried to establish the characteristics of the joint for lightweight structure.

최근 한국승용차의 색채경향에 관한 연구 (A study on the color trend of recent korean passenger car)

  • 박택용
    • 디자인학연구
    • /
    • 16호
    • /
    • pp.53-63
    • /
    • 1996
  • 고도의 경제성장과 더불어 우리들의 생활이 윤택해지면서 과거 부(富)의 상징으로 느껴졌었던 자동차가 지금은 우리들에게 없어서는 안될 생활필수품으로 자리잡게 되었다. 이러한 시대적 변화는 MY-CAR시대를 맞이하게 되었고, 그 수요는 폭발적으로 증가하고 있는 실정이다. 그렇지만 이러한 추세에 비하여 우리의 자동차 개발 기술 수준은 선진국들 처럼 질(質)과 양의 측면에서 균형을 이루지 못하고 있어 아직도 개인의 기호를 만족시키기에는 역부족임을 실감케 하고 있다. 본 연구에서는 자동차 개발기술과 품질의 균형 있는 발전을 꾀하기 위하여 현재까지 관심사가 적었던 자체 색 분야를 죽 연구대상으로 하여 주거의 연장으로서 필요한 상황과 최근 한국 승용차의 색상경향, 시대적 환경 요인들을 조사, 분석하고 색상개발 시 제한될 수 있는 여러 가지 문제점을 파악하여 현대인의 기호에 맞는 승용차 색상개발 시에 참고 자료로 제시하여 보다 체계적이고 효과적인 차체 색을 개발하는데 도움이 될 것으로 충분히 예상된다.

  • PDF

친환경자동차의 인체 안전을 위한 전기적 연속성 측정 연구 (Study on the Electric Continuity Measurements of Green Car for Human Body Safety)

  • 김향곤;이기연;김동욱;최효상
    • 전기학회논문지P
    • /
    • 제58권3호
    • /
    • pp.351-356
    • /
    • 2009
  • In this study, we analyzed and experimented about electric continuity for human body safety from green cars. And we compared power systems of HEV and examined about human body effect of current and time. We investigated internal and external standards and regulations for human body safety from high voltage electrical equipments. Indirect contact refers to contact between the human body and exposed conductive parts. According to UNECE R100, ISO 23273-3, ISO 6469-3 and Japanese Regulation Attachment 101, electric continuity between any two exposed conductive parts shall not exceed $0.1{\Omega}$. The value of electric continuity was measured below $0.1{\Omega}$ at the actual condition of green car. We expected that the results of these experiments can utilize to data for electrical safety of green car.

한국형 저상버스 복합소재 차체에 대한 비틀림 강성 평가 (Torsion Rigidity of Composite Material Cmbody for Low Floor Bus)

  • 임송규;김연수;목재균;장세기;조세현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.548-553
    • /
    • 2008
  • Low Floor buses have no steps to get on or get off the main cabin to provide the old and the handicapped with easy access. The car body for the low floor bus was designed to consider Korean physical standard, passenger capacity (standee, seated, handicapped), arrangement of vehicle components, and bus law or regulations. It was designed as an one body, without any reinforcement armature, which has light-weight sandwich constructions with glass epoxy skins, aluminum honeycomb cores and inner-frames. In this paper, torsion rigidity of the designed car body was evaluated and compared with that of a car body with reinforcement armatures in the cabin. Finite element method verified that the designed car body without reinforcement armatures could satisfy requirements of torsion rigidity.

  • PDF

레이저용접을 적용한 차세대 차체 개발 (The development of next generation car body using laser welding)

  • 이희범;장인성;정창호;권태용
    • 한국레이저가공학회:학술대회논문집
    • /
    • 한국레이저가공학회 2002년도 춘계학술발표대회 논문개요집
    • /
    • pp.25-27
    • /
    • 2002
  • Most of automotive companies make use of spot welding in order to assemble car body. Even though spot welding has been developed for last 60 years, there were some limitations in upgrading production line. Laser welding has advantages In productivity and degree of freedom in design. Thanks to fast speed, we can reduce body assembly line by 80%. Also with non-contact & one-side approach, it is possible to design various car body structures. New project launched the laser welding technology in mass production has started in 1999. In this paper, a new type of cur named 'next generation vehicle (NGV)' is introduced. The car body of NGV is welded with 4㎾ Nd: YAG laser.

  • PDF

자동차 주위에 흐르는 공기의 유동 저항에 미치는 차체의 형상 연구 (Study of the Shape of Car Body Affecting Flow Resistance of Air Flowing Near Car)

  • 이현창;조재웅
    • 한국산학기술학회논문지
    • /
    • 제15권8호
    • /
    • pp.4707-4712
    • /
    • 2014
  • 공기 저항으로 인하여 자동차가 연료를 많이 소모하는 경우가 있다. 본 연구에서는 승용차 차체 주위에서의 유동해석을 이용하여 공기 흐름에 대한 그 유동 저항을 분석한다. 그리고 실제 시장에서 팔리는 차로서 그 연구 모델들을 사용하였다. CFX인 유동해석을 이용하여 유동 입구평면에 들어가는 공기의 유속은 80km/h와 110km/h인 2가지 경우로서 본 연구방법으로서 자동차가 진행시 자동차 주위의 공기 유속과 차체 뒷면의 압력을 조사하였다. 연구모델의 형상은 Model 1 및 2인 두 가지로 하였다. 그리고 Case 1, 2, 3, 4인 4가지의 유동 흐름의 경우 중에서 Case 1의 경우가 차체 뒷면의 최대압력이 $1.017{\times}10^5Pa$로 가장 큰 압력을 나타내었다. 또한 Case 1의 경우에 차체주위에 흐르는 공기의 최대 속도가 43.81m/s로서 가장 큰 압력을 나타내었다. 승용차의 고속 주행 시(110km/h)가 정속 주행(80km/h)보다 큰 공기의 항력이 나타나는 것을 알 수 있고 차체의 단면적이 넓은 차가 단면적이 작은 차보다 항력이 더 크게 나타난 것을 알 수 있다. 본 해석 결과를 이용하여 공기 저항을 줄일 수 있는 자동차 차체의 형상 설계를 효율적으로 할 수 있다고 사료된다.

ANALYSIS PROCESS APPLIED TO A HIGH STIFFNESS BODY FOR IMPROVED VEHICLE HANDLING PROPERTIES

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.629-636
    • /
    • 2007
  • This paper describes the process of analyzing vehicle stiffness in terms of frequency band in order to improve vehicle handling. Vehicle handling and ride comfort are highly related to the systems such as suspension, seat, steering, and the car body design. In existing analytical processes, the resonance frequency of a car body is designed to be greater than 25 Hz in order to increase the stiffness of the body against idle vibration. This paper introduces a method for using a band with a frequency lower than 20 Hz to analyze how stiffness affects vehicle handling. Accordingly, static stiffness analysis of a 1g cornering force was conducted to minimize the deformation of vehicle components derived from a load on parts attached to the suspension. In addition, this technology is capable of achieving better performance than older technology. Analysis of how body attachment stiffness affects the dynamic stiffness of a bushing in the attachment parts of the suspension is expected to lead to improvements with respect to vehicle handling and road noise. The process of developing a car body with a high degree of stiffness, which was accomplished in the preliminary stage of this study, confirms the possibility of improving the stability performance and of designing a lightweight prototype car. These improvements can reduce the time needed to develop better vehicles.

다물체 동역학해석을 이용한 DMT 화차의 주행특성 연구 (Multibody Dynamic Simulation and Running Characteristics of DMT Freight)

  • 이승일;엄범규;이희성
    • 한국소음진동공학회논문집
    • /
    • 제19권1호
    • /
    • pp.35-41
    • /
    • 2009
  • Through the multibody dynamic simulation, the analysis model of the modalohr freight car of the DMT freight car was developed. By using the developed analysis model, the running dynamic characteristics was inquired through the dynamic analysis about the modalohr freight car. As the running speed and the primary suspension were increased, the lateral and vertical vibration accelerations of the car-body and the bogie were also increased. In case of the lateral vibration acceleration of the car-body, however, review should be considered since it can be influenced by the nonlinear characteristic of the primary suspension. The lateral and vertical vibration of the car-body were generated at the frequency of $2{\sim}3\;Hz$ and $7{\sim}8\;Hz$. And the lateral and vertical vibration of the bogie were generated at the frequency of $25{\sim}35\;Hz$ at the low speed section, $40{\sim}50\;Hz$ at the high speed section.

유선형 차체가 적용된 1인용 저속 전기 자동차의 설계 및 제작 (Design and Fabrication of Single-person Neighborhood Electric Vehicle with Streamlined Car Body)

  • 나영민;박종규
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.55-63
    • /
    • 2018
  • In recent years, with the growing interest in electric vehicles, the development of a Neighborhood Electronic Vehicle (NEV) made for urban driving is accelerating. Existing NEVs are set to ~0.3 - 0.35 with more emphasis on performance rather than minimizing air resistance. In this paper, a NEV with a streamlined car body is proposed. The shape of dolphins and sharks was applied to the car body to minimize the air resistance generated when driving. Also, the performance of the vehicle was estimated by calculating the traction force and the roll couple, etc. To check the drag coefficient of the car body, finite element analysis software (COMSOL Multiphysics) was used. The frame of the vehicle is divided into the forward and the rear parts. Carbon pipe is used for the frame by MIG welding. The car body of the vehicle was fabricated by forming carbon fiber. This study confirmed the general possibility of using NEVs through driving experiments.

차체 전방의 앞 유리 경사각도에 따른 유동해석에 관한 연구 (Flow Analysis due to the Slant Angle of a Windscreen at the Front of a Car Body)

  • 최계광;조재웅
    • 한국기계가공학회지
    • /
    • 제19권9호
    • /
    • pp.9-14
    • /
    • 2020
  • In this study, CFX analyses were performed with flow models to minimize the flow resistance due to the windscreen on the front of a car body. The results indicated that the greater the slant angle of the windshield, the greater the maximum pressure area. The lower the slant angle of the windscreen, the smaller the area in which the air collides with the front of the car body and the more smoothly the air moves. The results of this study can be applied to increase fuel economy under driving conditions by changing the slant angle of the vehicle's windscreen.