• 제목/요약/키워드: Car-body

검색결과 704건 처리시간 0.028초

충돌 접촉에 있어서의 차체와 승객의 손상 (Damage of Car Body and Passenger at Impact Contact)

  • 한문식;조재웅
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.280-283
    • /
    • 2011
  • This study investigates the durability of car body and the safety of passenger inside car body in the case of the impact contact at passenger and car body. In case of front impact contact, maximum von Mises equivalent stress and principal stress become 3240.7MPa and 1634MPa respectively at the rear part of car body and the neck of dummy. And maximum total deformation occurred with 14.145mm at the hand of dummy. In case of side impact contact, maximum von Mises equivalent stress and principal stress become 7687.9MPa and 1690.7MPa respectively at the front part of car body and the lap of dummy. And maximum total deformation occurred with 16.414 mm at the foot of dummy. In case of rear impact contact, maximum von Mises equivalent stress and principal stress become 2366.6MPa and 1447MPa respectively at the front part of car body and the neck of dummy. And maximum total deformation occurred with 7.548mm at the rear part of car body. As the maximum von-Mises stress at side impact is shown with more than 700MPa as over two times at front or rear impact the danger of car body is increased. The great possibility of damage is shown at neck and hand of dummy with more than total displacement of 10mm.

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.

모듈화를 위한 차체 볼팅 조립구조에 대한 고찰 (The Review of Bolt-Assembled Car body Structure for Modularization)

  • 최원호;장동화;전시현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1661-1667
    • /
    • 2008
  • Recently, a rolling stock has been requiring more efficient manufacturing method than welding for the improved quality and the enhanced fabrication of car body structure. As an alternative, modularization of car body structure is being studied. Accordingly, rolling stock manufacturers need to make it possible to develop a variety of rolling stock vehicles made from modularized sub-blocks in order to meet various customer's demands. The bolt-assembled car body structure for modularization is known to have many advantages over the existing weld-assembled method and is free from the possible welding defects, such as welds between dissimilar metals, crack, deformation and loss of strength. Consequently, we can have the improved overall quality, the reduced man powers for assembly and the satisfied strength of car body structure. The review is about the bolt-assembled car body structure for modularization to assure global competitiveness and an enhanced technique in terms of assembly methodology of car body structure.

  • PDF

경량전철차량 알루미늄 구조체 하중시험방법 연구 및 결과고찰 (A Study on The Load Test Method and Result For AL Car Body of LRT)

  • 김원경;원시태;전창성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.986-995
    • /
    • 2008
  • This study introduces the testing results of the AL car body which is applied to LRT. The LRT car body is made of aluminum structure materials like a sandwich panel. The static load test was performed to evaluate the structural characteristic and stability of the AL car body. Considering the vertical, compressive, twisting load and 3-point supporting, Bend natural frequency Measurement, Twist natural frequency Measurement type as a testing terms, the structural stability of a car body was evaluated.

  • PDF

철도차량 알루미늄 차체 용접방법에 따른 하중시험결과 비교 고찰 (A Study on Comparison Of The load Test Results Of AL Car Body Welding Method For Rolling Stock)

  • 김원경;원시태;전창성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1604-1612
    • /
    • 2009
  • This study introduces comparison the testing results of the AL car body which is applied to FSW and GMAW welding method. The car body is made of aluminum structure materials like a sandwich panel. The static load test was performed to evaluate the structural characteristic and stability of the AL car body. Considering the vertical, compressive, twisting load and 3-point supporting, Bend natural frequency Measurement, Twist natural frequency Measurement type as a testing terms, the structural stability of a car body was evaluated.

  • PDF

철도 차량의 연결기 시스템의 충돌시뮬레이션 (Collision Simulation for the Coupler System of Rolling Stock)

  • 맹희영;김진성;박영일
    • 한국생산제조학회지
    • /
    • 제22권3_1spc호
    • /
    • pp.566-572
    • /
    • 2013
  • In this study, a collision simulator for rolling stock that considers the plastic deformation of the car body and the dynamic characteristics of a coupler system was developed using Matlab/Simulink. Normally, a coupler system has functions for both connecting the individual car bodies and absorbing the impact energy. A coupler system is composed of a rubber buffer, hydraulic buffer, and deformation tube elements. The coupler system should protect the car body and prevent damage when the shunt speed is less than 10 km/h, which is the regulation speed based on the safety rule for rolling stock. However, if the shunt speed is greater than 10 km/h, a car body is plastically deformed. Therefore, the modeling of the plastic deformation of a car body should be included in a simulator. This collision simulator can provide the design parameters for a coupler system and car body.

전동차 차체 구조물에 대한 구조해석 및 실험에 관한 연구 (A Study on the Structural Analysis and Test of an Electric Car-Body)

  • 전형용;성낙원
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.28-36
    • /
    • 1998
  • This investigation is the result of a structural analysis by the finite element method and static loading test for the optimal structural design of an electric railway vehicle made of stainless 301L materials. We analyzed the stress and displacement of the existing electric car-body structure for predicting the position of concentrated stress, the flow of stress, rigidity to be occurred in the car-body structure when it is subjected to the vertical load. It was exposed that the side sills and window corners around the bolsters are the weak parts of the electric car-body structure because the bolsters of the electric car-body structure were subjected to the vertical load and dynamic load to be occurred during running. The flow of stress and the cause of stress concentration in the weak zone were studied in order to prevent the concentration of stress and buckling. The rearrangement of the structure and the selection of the beam elements were also carried out for optimum design of the structure.

  • PDF

자동차 차체 보호를 위한 산화방지 장치의 성능 평가 (Performance Evaluation of Antioxidizing Device for Protection of Car Body)

  • 김해식;윤영진;지종기
    • 대한화학회지
    • /
    • 제46권5호
    • /
    • pp.444-456
    • /
    • 2002
  • 차체의 산화를 방지하기 위하여 희생적 양극을 사용한 산화방지 장치를 개발하였다. 희생적 양극은 철보다 산화 전위가 높은 Mg, Al, Zn으로 만들어 졌고 이것은 차체의 철이나 철합금보다 먼저 산화되어 차체의 부식을 방지한다. 차체 산화방지 장치를 제작하여 철시편을 염산, 질산 및 황산에 대한 방식효과를 시간에 따라 측정하였고 SEM과 XPS를 이용하여 철시편 표면의 방식효과를 분석하였다. 철시편을 산화 방지 장치에 연결하면 산화되어 산성용액 속으로 녹아 들어가는 철의 양이 현저하게 감소하고 철시편 표면의 산화가 방지되며 산화된 철은 $Fe_2O_3$의 산화형태를 가짐을 확인하였다. 따라서 차체 산화방지를 차체에 직접 부착한다면 차체의 부식 및 산화를 효과적으로 방지할 것으로 기대된다.

산업용 로봇을 이용한 3차원 차체측정 시스템 (Three Dimension Car Body Measuring System Using Industrial Robots)

  • 김문상;조경래;박강;신현오
    • 대한기계학회논문집A
    • /
    • 제20권8호
    • /
    • pp.2555-2560
    • /
    • 1996
  • Inspecting the dimensional accuracy of a car-body in assembly line is a very important process to assure high productivity. Now there exist two common inspecting methods in practice. One is to measure a sampled car-body with three dimensional measuring machine, and the other is to measure car-body with three dimensional measuring machine, and the other is to measure car-body in assembly line using many sensors fixed to a large jig frame. The formal method takes too long to inspect a sampled car-body of a same sort, and cannot therefore give an useful error trend for the whole production. On the other hand, the latter lacks flexibility and is very cost-intensive. By using industrial robots and sensors, an in-line Car-Body Measuring(CBM) system which ensured high flexiblity and sufficient accuracy was developed. This CBM cell operates in real production line and measures the check points by the non-contact type using camera and laser displacement sensor(LDS). This system can handle about 15 Measuring points within a cycle time of 40 seconds. A process computer controls whole process such as data acquisition file handling and data analysis. Robot arms changes in length due to ambient temperature fluctuation affecting the measuring accuracy. To compensate this error, a robot arm calibration process was developed.

2층 고속열차 차체 구조물의 경량화 설계 (Lightweight Design of Car Bodies for Double Deck High-Speed Trains)

  • 강승구;신광복;고태환;유원희
    • 한국생산제조학회지
    • /
    • 제24권2호
    • /
    • pp.177-185
    • /
    • 2015
  • This paper describes a weight-reduction design method for the car bodies of a double deck high-speed train (service speed of 300 km/h). The method uses lightweight materials and a topology optimization technique. In this study, aluminum extrusions and sandwich composites were selected as the best materials to reduce the weight of the car body. The topology optimization technique was used to determine which car body parts could be made of the sandwich composites to achieve additional weight savings. The results of the topology optimization analysis showed that sandwich composites could be used for secondary car body members such as the roof and the second underframe. Also, it was found that a car body composed of aluminum extruded parts and sandwich composites could weigh up to 14% less than a car body made of only aluminum extrusions.