• Title/Summary/Keyword: Car-body

Search Result 704, Processing Time 0.026 seconds

Structural Weak Area Analysis of an Electric Car Bogie Frame by Finite Element Analysis (유한요소 해석에 의한 전동차 대차 프레임의 구조 취약부 해석)

  • Goo Byeong-Choon;Whang Won-Joo;Choi Sung-Kyu;Oh Il-Geun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.628-633
    • /
    • 2004
  • we studied the structural weak areas of an electric car bogie frame by finite element analysis. The bogie frame under consideration is a part of the standard electric car with aluminium car body. Vertical, torsional. lateral and longitudinal loadings were applied. Numerical results were compared with the experimental results. The two results are in a good agreement.

  • PDF

The Precise Extrusion-Technical Development to Get Excellent Mechanical-property and Accurate Shape- Dimension (우수한 기계적 특성과 형상치수 확보를 위한 정밀 압출기술개발)

  • Lee, Hyun-Cheol;Lee, Kwang-Sik;Oh, Kae-Hee;Park, Sang-Woo
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.311-320
    • /
    • 2009
  • Most advanced countries are researching to apply light weight materials far rolling stock because weight reduction for railway body derives cost-saving, energy-saving, and high-speed. Likewise, current Korea rolling stock field makes arduous effects of weight-reduction, miniaturization, and high-efficiency to achieve a high-speed railway. Aluminum becomes suitable material for these projects because it is much lighter than steel or stainless. Manufacturing the railway car body by using the Aluminum is increasing because Aluminum is not bringing the corrosion by unique oxidation-passivate. Aluminum extrusion profile far railway body requires a high mechanical property, accurate shape dimension, and stable quality because the railway body is composed with many different kinds of extruded profiles. Therefore, it is necessary to research about Aluminum precision-extrusion technology to maintain exit temperature and die load. The goal of this project is applying the Aluminum extrusion profile to next-generation railway car body by developing the Aluminum extrusion profile according to precision-extrusion technology which may maintain isothermal exit temperature.

  • PDF

Development of Accident Analysis Model in Car to Pedestrian Accident (차 대 보행자 충돌 시 사고해석 모델 개발)

  • Kang, D.M.;Ahn, S.M.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.76-81
    • /
    • 2009
  • The fatalities of pedestrian account for about 21.2% of all fatalities at 2007 year in Korea. To reconstruct exactly the accident, it is important to calculate the throw distance of pedestrian in car to pedestrian accident. The frontal shape of SUV vehicle is dissimilar to passenger car and bus, so the trajectory and throw distance of pedestrian by SUV vehicle is not the same of passenger car and bus. The influencing on it can be classified into the factors of vehicle and pedestrian, and road factor. It was analyzed by PC-CRASH for simulation, and SPSS s/w was used for regression analysis. From the simulation results, the maximum impact energy of multi-body of pedestrian was occurred to that of torso body at the same time. And the throw distance increased with the increasing of impact velocity, and decreased with the increasing of impact offset. Also it decreased with the increasing of velocity of pedestrian at accident, and the throw distance of wet road was longer than that of dry road. Finally, the regression analysis model of SUV(Nissan Pathfinder type)vehicle in car to pedestrian accident was as follows; $$disti_i=-0.87-0.11offseti_i+0.69speed_i-4.27height_i+0.004walk_i+0.63wet_i+{\epsilon}_i$$.

  • PDF

The Design of Vehicle for Air tightness to Pressure wave of High Speed Train (고속전철의 압력파 영향에 대한 차체 기밀설계)

  • 박광복;김현철
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.83-94
    • /
    • 1999
  • This study is about design of vehicle for air tightness to pressure waves of high speed train. When the train runs to high speed over 300km/h, the comfort of passenger come down due to difference pressure between inside and outside of passenger room. The car-body was carried out the design of air-tightness, and the analysis of inside pressure of vehicle in tunnel by TG_TUN of ALSTOM Co. The result of analysis should be used the design of air pressurized system and car-body of G7 high speed train project.

  • PDF

Reliability Estimation of the Standard Electric Multiple Unit (표준 전동차의 신뢰성 평가)

  • 구병춘;김남포
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.330-335
    • /
    • 2002
  • To estimate the reliability of the standard electric multiple unit developed by Korea Railroad Research Institute, the vehicle system composed of 4 cars is divided into 14 subsystems. The 14 subsystems are connected in series. For each subsystem except for car body and bogie, failure rate is evaluated by an optimal failure model used in reliability engineering. For car body and bogie probabilistic structural integrity analysis is carried out. The distribution of failure rate of each part and system is assumed to be exponential. The estimated MTBF of the vehicle satisfies the planned MTBF.

  • PDF

A Study on the Selection of Optimal Spot-weld Pitch for The Stainless Steel Car-body (스텐레스 차체 스폿용접부의 최적 피치 선정에 관한 연구)

  • 서승일;차병우
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.560-567
    • /
    • 1998
  • The pitch of spot-weld is a important variable in a view of both production cost and strength of car-body. Various renditions for the selection of pitches have been researched and especially in this paper the buckling analysis is carried out for the 2-sheet pannel structures. The optimal pitch is obtained by optimization program and FEM, which can enhance the buckling strength.

  • PDF

A Study on the Side Impact Characteristics Occurred from SUV-to-Passenger Car using LS-DYNA (LS-DYNA를 이용한 SUV와 승용차의 측면충돌 특성에 대한 연구)

  • Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.217-226
    • /
    • 2018
  • Since the sides of a vehicle are designed asymmetrically unlike its front or rear, the degree of deformation of the car body greatly differs depending on the site of collision if a broadside collision takes place. When elastic deformation and plastic deformation occur in the car body occur due to a collision, the kinetic energy is absorbed into the body, and the momentum decreases. Generally, an analysis of traffic accidents analyzes the vehicle's behavior after a collision by the law of momentum conservation and corrects the error of the amount of energy absorption due to the deformation of the car body, applying a restitution coefficient. This study interpreted a finite element vehicle model applying the structure of the car body and the material properties of each part with LS-DYNA, analyzed the result and drew the restitution coefficient and the depth of penetration according to the contact area of the vehicle in a broadside collision between an SUV and a passenger car. When the finally calculated restitution coefficient and depth of penetration were applied to the examples of the actual traffic accidents, there was an effect on the improvement of the error in the result. It was found that when the initial input value, drawn using the finite element analysis model, it had a higher reliability of the interpretation than that of the existing analysis techniques.

Manufacturing Preparations in the New Car Development for an Automotive Body Shop by Digital Manufacturing Technologies (차체공장 디지털생산 기술 적용을 통한 신차 개발 생산준비 업무 수행)

  • 노상도;박영진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.118-126
    • /
    • 2003
  • Digital Manufacturing is a technology facilitating effective developments and agile productions of the product via digital computer models representing physical and logical schema and the behavior of the real manufacturing systems including manufacturing resources, environments and products. For the successful application of this technology, a digital factory as a well-designed and an integrated environment is essential. In this paper, we constructed the sophisticated digital factory of a Korean automotive company's body shop, and conducted precise simulations of unit cell, lines and the whole factory for the collision check, the production flow analysis and the off-line programming. We expect that this digital factory of the body shop helps us achieve great savings in time and cost for many manufacturing preparation activities of the new car development.

Vibration Analysis of Body Mount System on Chassis Frame (섀시 프레임 상의 바디 마운트계의 진동해석)

  • Lee, Chang-Ro;Ryu, Bong-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.141-146
    • /
    • 2010
  • This paper describes the static and dynamic characteristics of body mount system which are to be considered in the early design stage. At every location of body mount the static load and dynamic response to road input were calculated using the half car model. Normal mode analysis for the half car model was also performed. In the analysis the design parameters such as the stiffness of mount rubbers and their distribution on mount location were examined for improving ride comfort especially in the lower frequency range.

A Study on Injury Characteristics of Elderly in Car-to-Car Frontal Crashes (차대 차 정면층돌사고 시 고령자 상해 특성 연구)

  • Hong, Seung-Jun;Cho, Kyoung-Keun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.90-97
    • /
    • 2009
  • One of the most important factors that affect a person's risk of injury in a motor vehicle crash is the age of the person. This study investigates the characteristics of crash injuries among young, middle-aged and older drivers and occupants. Based on the comprehensive claim data from automobile insurance from 2000 to 2007, this study examines in great detail the drivers and occupants injury body regions and severity by age in car-to-car frontal crashes. It has been shown that elderly drivers and occupants suffer more injuries at a chest region compared to the middle-aged group. This research calls attention to the need for design to make vehicles more protective for older drivers in car-to car frontal crashes.