• 제목/요약/키워드: Car suspension

검색결과 283건 처리시간 0.037초

주행중 차고 조절이 가능한 유압식 현가장치 개발 및 진동특성 비교 분석 (The development of hydraulic suspension system capable of vehicle height at driving and the comparative analysis of vibration characteristic)

  • 강형선;백종진
    • 한국산학기술학회논문지
    • /
    • 제14권2호
    • /
    • pp.561-566
    • /
    • 2013
  • 본 연구는 유압식 자동차고 조절장치 개발 및 상기장치를 일반 상용차에 적용시키기 위한 것이다. 운전자의 승차감에 영향을 줄 진동특성을 주행시험을 통하여 파악하고자 하였다. 유압식 자동차고 조절장치는 현재 승용차에 가장 많이 사용되고 있는 맥퍼슨 형식의 형태로 설계되었다. 맥퍼슨 형식의 순정현가장치, 튜닝현가장치, 유압식 자동차고 조절장치를 장착한 차량으로 시험을 수행하였다. 자동차에 전달되는 진동특성은 랜덤형태이므로 PSD(Power Spectrum Density)값을 비교하였다.

전동차 상하진동에 대한 현가장치 설계변수의 영향 (Effects of the Design Parameters of Suspension Systems on the Bounce of Electric Trains)

  • 박기수;최연선
    • 한국철도학회논문집
    • /
    • 제11권1호
    • /
    • pp.39-44
    • /
    • 2008
  • 본 연구에서는 실측 주행시험 결과데이터를 바탕으로 윤축 진동과 설계변수간의 관계를 규명하고자 2 자유도계 모델을 구성하였다. 특히 2차 현가장치인 공기스프링의 점탄성 특성을 반영하기 위해 니시무라 공기스프링 모델을 적용하였다. 수치해석 결과 내부 압력 감소 및 보조 공기탱크 체적 증가 시 객차 가속도응답이 감소하는 것을 확인할 수 있었다. 이에 안정성을 헤치지 않는 범위 내에서 현가장치의 강성을 조정해 볼 필요가 있음을 알았다.

Fuzzy-sliding mode control of a full car semi-active suspension systems with MR dampers

  • Zheng, L.;Li, Y.N.;Baz, A.
    • Smart Structures and Systems
    • /
    • 제5권3호
    • /
    • pp.261-277
    • /
    • 2009
  • A fuzzy-sliding mode controller is presented to control the dynamics of semi-active suspension systems of vehicles using magneto-rheological (MR) fluid dampers. A full car model is used to design and evaluate the performance of the proposed semi-active controlled suspension system. Four mixed mode MR dampers are designed, manufactured, and integrated with four independent sliding mode controllers. The siding mode controller is designed to decrease the energy consumption and maintain robustness. In order to overcome the chattering of the sliding mode controllers, a fuzzy logic control strategy is merged into the sliding mode controller. The proposed fuzzy-sliding mode controller is designed and fabricated. The performance of the semi-active suspensions is evaluated in both the time and frequency domains. The obtained results demonstrate that the proposed fuzzy-sliding mode controller can effectively suppress the vibration of vehicles and improve their ride comfort and handling stability. Furthermore, it is shown that the "chattering" of the sliding mode controller is smoothed when it is integrated with a fuzzy logic control strategy. Although the cost function of the fuzzy-sliding mode control is a slightly higher than that of a classical LQR controller, the control effectiveness and robustness are enhanced considerably.

후륜 인휠 모터 전기자동차의 구동 및 반능동 현가시스템 동시 제어를 통한 주행 성능 분석 (Driving Performance Analysis of a Rear In-wheel Motor Vehicle with Simultaneous Control of Driving Torque and Semi-active Suspension System)

  • 신슬기;최규재
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.11-17
    • /
    • 2015
  • Recently, the in-wheel motor vehicle is rapidly developed to solve energy exhaustion and environmental problems. Especially, it has the advantage of independently driving the torque control of each wheel in the vehicle. However, due to the weight increase of wheel, the comfort of vehicle riding and performance of road holding become worse. In this paper, to compensate the poor performance, a simultaneous control of the driving torque and semi-active suspension system is investigated. A vehicle model is generated using CarSim Software and validated by field tests. Co-simulation of CarSim and MATLAB/Simulink with control logics is carried out, and it is found that simultaneous control of the driving torque and semi-active suspension system can improve driving stability and durability of the in-wheel motor system.

능동 현가 장치의 외란 적응 슬라이딩 모드 제어 (Active Suspension using Disturbance Accommodating Sliding Mode Control)

  • 김종래;김진호
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.275-280
    • /
    • 1999
  • This paper presents a disturbance accommodating sliding mode control for a quarter-car active suspension using an electro-hydraulic actuator. The electro-hydraulic actuator model is nonlinear and uncertain. The hardware constrains on the actuator prevent high gain in a sliding mode control, which deteriorates the force tracking performance. DAC(Disturbance Accommodating Control) is combined with the sliding mode control to improve the tracking performance. DAC observer estimates the pressure due to the actuator uncertainty. The additional control is designed to compensate the estimated pressure. Simulation results show the improved tracking performance with the Proposed control methods.

  • PDF

극점배치기능을 갖는 LQ제어기 설계 및 자동차 능동 현가장치 제어에의 응용 (Linear Quadratic Control with Pole Placement for an Automotive Active Suspension System)

  • 최재원;서영봉;유완석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.513-517
    • /
    • 1995
  • In this paper, a relation of matrix Q in cost function to distances between the closed-loop and open-loop poles of a multi input controllable systems is studied. Futhmore, the state feedback gain with exact desired eigenvalues in the LQR is computed. The proposed scheme is applied to designing automotive active suspension control system for a half-car model and its performance is compared with the existing LQR control system design methodology.

  • PDF

차륜 진동을 고려한 능동 현가계 제어 (Control of Active Suspension System Considering Wheel-Hop)

  • 이동락;한기봉;이시복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.420-424
    • /
    • 1994
  • In this paper, an active suspension system considering the wheel hop is studied for a quarter car model. A LQ controller controls an active suspension system in which a vibration absorber is attached to the wheel axis. The vibration absorber is adopted to reduce the vibration near the natural frequency of the unsprung mass, and the LQ controller is used to control the vibration near the natural frequency of the sprung mass. The perfomance of the control system considering the wheel hop is compared with that of a LQ control system.

  • PDF

1/4 차량 현가 장치의 강인 안정성을 보장하는 외란관측기 기반의 제어 시스템 설계 (Design of a Disturbance Observer based Control System to Ensure Robust Stability of Quarter-Car Suspensions)

  • 소상균;류정래;도태용
    • 제어로봇시스템학회논문지
    • /
    • 제22권12호
    • /
    • pp.995-1001
    • /
    • 2016
  • The vehicle suspension system plays a very important part related with vehicle ride and handling. To improve the vehicle ride and handling many researches have been progressed from various damping parameter tuning techniques to the development of the electronic controlled suspension systems. In this paper, as one of the ride performance improvement a disturbance observer(DOB) based control system is applied to the quarter car vehicle model in order to show that the DOB can obtain good vibration isolation characteristics. First, the robust stability criterion for the DOB is introduced in detail, and then how DOB is applied to the 1/4 car vehicle model is represented, and finally to confirm the effectiveness of the DOB in vehicle ride performance improvement a computer simulation is carried out for various driving conditions.

반응 표면 분석법을 활용한 자동차용 현가스프링 최적화 설계 (Optimal design of car suspension springs by using a response surface method)

  • 유동우;김도엽;신동규
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.246-255
    • /
    • 2016
  • When spring of the suspension is exerted by an external load, a car should be designed to prevent predictable damages and designed for a ride comfort. We used experiments design to design VON-MISES STRESS and K, a constant, of spring of suspension which is installed in a car as a goal level. We analyzed the result from Edison's Elastic - Plastic Analysis SW(CSD_EPLAST) by setting D, d, n as external diameter of coil, internal diameter of coil, the number of total coil respectively. The experiment design let the outcome be as Full-second order by using Box-Behnken which is one of response surface methods. Experimented and analyzed results based on the established experiments design, We found out design parameter which has desired VON-MISES STRESS and the constant K. Additionally, we predicted life time of when the external load was exerted by repeated load by using fatigue equation, and verification of plastic deformation has also been made. Additionally we interpreted a model, which is formed by optimized design parameter, with linear analysis and non-linear analysis, at the same time we also analyzed plastic deformation with the values from the both models. Finally, we predicted fatigue life of optimized model by using fatigue estimation theory and also evaluated a ride comfort with oscillation analysis.

  • PDF

Self-tuning optimal control of an active suspension using a neural network

  • Lee, Byung-Yun;Kim, Wan-Il;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.295-298
    • /
    • 1996
  • In this paper, a self-tuning optimal control algorithm is proposed to retain the optimal performance of an active suspension system, when the vehicle has some time varying parameters and parameter uncertainties. We consider a 2 DOF time-varying quarter car model which has the parameter variation of sprung mass, suspension spring constant and suspension damping constant. Instead of solving algebraic riccati equation on line, we propose a neural network approach as an alternative. The optimal feedback gains obtained from the off line computation, according to parameter variations, are used as the neural network training data. When the active suspension system is on, the parameters are identified by the recursive least square method and the trained neural network controller designer finds the proper optimal feedback gains. The simulation results are represented and discussed.

  • PDF