• Title/Summary/Keyword: Car interior noise

검색결과 127건 처리시간 0.029초

CAE를 이용한 파워트레인의 가진력 해석 (Excitation Force Analysis of a Powertrain Based on CAE Technology)

  • 김성종;이상권
    • 한국정밀공학회지
    • /
    • 제25권12호
    • /
    • pp.107-116
    • /
    • 2008
  • The excitation force of a powertrain is one of major sources for the interior noise of a vehicle. This paper presents a novel approach to predict the interior noise caused by the vibration of the power rain by using the hybrid TPA (transfer path analysis) method. Although the traditional transfer path analysis (TPA) is useful for the identification of powertrain noise sources, it is difficult to modify the structure of a powertrain by using the experimental method for the reduction of vibration and noise. In order to solve this problem, the vibration of the power rain in a vehicle is numerically analyzed by using the finite element method (FEM). The vibration of the other parts in a vehicle is investigated by using the experimental method based on vibrato-acoustic transfer function (VATF) analysis. These two methods are combined for the prediction of interior noise caused by a power rain. Throughout this research, two papers are presented. This paper presents a simulation of the excitation force of the power rain exciting the vehicle body based on numerical simulation. The other paper presents a prediction of interior noise based on the hybrid TPA, which uses the VATF of the car body and the excitation force predicted in this paper.

전동차 실내소음특성 및 기여도 분석 (Interior noise characteristic and contribution analysis for rolling stocks)

  • 정승원;이용관;박석태;김경환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 춘계학술대회 논문집
    • /
    • pp.200-207
    • /
    • 1999
  • The purpose of this research is to setup the design procedure of low noise rolling stocks. Noise sources are identified at a field test, and the contribution of noise sources to each part of car interior is ensured by sound intensity measurement technique. Added material to each section of the carbody makes it possible to identify absorption or reflection performance of each part to the anterior random noise. Such experimental tests to the exterior noise intruding through the floor represent that the best countermeasure on the floor is to implement reflecting material which can properly interfere noise. Design procedure of low noise rolling stocks is set through several experiments.

  • PDF

유럽 수입 차량의 소음개선을 위한 NVH소재 적용연구 (A study on the noise improvement of the European vehicles, with using NVH material)

  • 권요섭;김찬묵;사종성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.680-685
    • /
    • 2006
  • The latest trend in the automotive industry demands the development of high stiffness car bodies and the securement of inter-system performance for low vibration and noise vehicles. This demand, however, conflicts with need for light weight design and greater fuel efficiency, thus raising the importance of optimization design to satisfy both developmental goals. We chose two European medium sedans, which has gasoline engine and diesel one, to elucidate the noise characteristics of diesel passenger cars, whose sales have been increasing in both Korea and Europe. In the present study a systematic experiment was conducted to analyze the noise characteristics in diesel cars. we made it possible for differentiating car management according to customer demand while allowing for improved commercial feasibility. it was possible to improve interior noise by 2 dB(A) on average sound pressure level. As a result, by 4% higher on articulation index(AI).

  • PDF

승용차의 럼블링 음질 인덱스 개발 (Rumbling Index Development for a Passenger Car)

  • 채희창;박동철;정승균;이상권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.628-634
    • /
    • 2003
  • Rumbling sound is one of the most important interior sound of a passenger cu. The conventional rumbling noise research was focused on the reduction of the A-weighted sound pressure level. However A-weighted sound pressure level can not give the whole story about the rumbling sound of a passenger car. In this paper, we employed sound metric which is the subjective parameter used in psycoacoustics. According to recent research results, the relation between sound metrics and subjective evaluation is very complex and has nonlinear characteristics. In order to estimate this nonlinear relationship, artificial neural network th[ ory has been applied to derivation of sound quality index fur rumbling sound of a passenger car.

  • PDF

밸런스 샤프트 적용에 따른 4기통 디젤 엔진 블록의 방사소음 특성 개선 해석 (The Analysis of NVH Characteristics of 4-Cylinerder Diesel Engine Block by Adapting Balancing Shaft)

  • 최천;서명원;김영진
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.129-137
    • /
    • 2000
  • The powertrain is an important factor for the interior and exterior noise behavior of the vehicle Thus, the noise vibration and harshness(NVH) behavior of an engine is becoming a major target of the powertrain development. This paper describes the analyses with the aim to reduce the vibration and noise of an advanced inline 4-cylinder diesel engine block by use of CAE methods. The characteristics of an engine block as a main excitation source of car interior noise is studied. Particularly, The effect of balance shaft to reduce the 2nd order engine excitation force is calculated by forced vibration and radiated noise analysis. The engine exitation forces are obtained under real operating conditions. It is shown that the reduction of vibration and noise level by adapting blancing shaft is well predicted and rediated noise is directly related to the surface velocity of engine block.

  • PDF

실차 소음 최적화를 위한 주파수 응답 함수 합성법의 적용 (Application of FRF-Based Substructuring to Optimization of Interior Noise in Vehicle)

  • 정원태;강연준;김상훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.140-143
    • /
    • 2005
  • The hybrid CAE/CAT methods are widely applied to product development in various fields because this method can predict the response of the whole system when a part of the system is changed. Especially, the hybrid CAE/CAT method is very useful to predict tile vehicle NVH characteristics after changing some parts of the vehicle. Target parts can be established on the basis of test models and FE models of the prototype constructed in the planning stage of car development. In this study, the topic was focused on the proper test-based FBS application process to predict vehicle NVH characteristic. First, the test-based FBS method was apply to vehicle substructure and car-body. And then the test-based model was replaced with FE model to apply hybrid CAE/CAT method. The replaced FE model was modified through the optimization process. The interior noise in vehicle during the drive was predicted with Modified FE model, then the predicted results were verified by experimenting with actual modified model.

  • PDF

시험을 통한 한국형 고속전철 차량의 속도에 따른 실내소음 수준분석 (Analysis of the internal noise level according to the speed variation on the running test for for Korean High Speed Train)

  • 박찬경;박춘수;김기환;이억재;나희송
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.652-657
    • /
    • 2004
  • Korean High Speed Train (KHST) designed to operate at 350km/h has been tested on KyungBu high speed line since it was developed in 2002. The specification of the interior noise level for high speed train in Korea has been adopted through the contract between KHRC and Korea TGV consortium, not a national specification. But it can not be adopted to KHST designed at 350km/h because this has involved up to 300Km/h. Therefor, in this paper, the interior noise level at 350km/h are predicted in passenger car using the results at 300Km/h and these results show that the KHST's interior noise levels are good up to 300Km/h but need to be reduced at 350Km/h in the view point of limit value at 300Km/h of the contract between KHRC and Korea TGV consortium. Also it proposed to make a national specification for the interior noise level to evaluate it in detail at 350Km/h.

  • PDF

차실 내부소음의 특성과 저감에 관한 실험적 고찰(상)

  • 정주화
    • 오토저널
    • /
    • 제5권2호
    • /
    • pp.15-20
    • /
    • 1983
  • The nature and the sources of sound in cars is discussed in the light of many previous works, and the importance of the system resonances inside cars is suggested. An investigation of a 'boom' problem in a small size passenger car is described. It was established that the 'boom' frequencies coincided with engine firing frequency and also with several system resonances. To find out main transmission path of the noise to the car interior, various possible sources were eliminated from the investigation by means of simple modification to the vehicle. Data on the structural modes of the body, and the acoustic modes of the passenger compartment at various forcing cases were obtained to provide better understanding of the problem. It was found that the acoustic resonance responsible for the boom was controlled largely the bending motion of the floor. To investigate the effect of the structural modification to the acoustic response, center floor of the car was reinforced. a great reduction of the noise inside the car especially at the offending speed range, was achieved by this modification.

  • PDF

Interior Noise Characteristics in Japanese, Korean and Chinese Subways

  • Soeta, Yoshiharu;Shimokura, Ryota;Jeon, Jin Yong;Lee, Pyoung Jik
    • International Journal of Railway
    • /
    • 제6권3호
    • /
    • pp.120-124
    • /
    • 2013
  • The aim of this study was to clarify the characteristics of interior noise in Japanese, Korean, and Chinese subways. The octave-band noise levels, A-weighted equivalent continuous sound pressure level ($L_{Aeq}$) and parameters extracted from interaural cross-correlation/autocorrelation functions (ACF/IACFs) were analyzed to evaluate the noise inside running train cars quantitatively and qualitatively. The average $L_{Aeq}$ was 72-83 dBA. The IACF/ACF parameters of the noise showed variations in their values, suggesting they are affected by the characteristics of the trains running, wheel-rail interaction, and cross-section of the tunnels.