• Title/Summary/Keyword: Car Sensor Data

Search Result 103, Processing Time 0.029 seconds

A Design and Implementation of Floor Detection Application Using RC Car Simulator (RC카 시뮬레이터를 이용한 바닥 탐지 응용 설계 및 구현)

  • Lee, Yoona;Park, Young-Ho;Ihm, Sun-Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.507-516
    • /
    • 2019
  • Costs invested in road maintenance and road development are on the rise. However, due to accidents such as portholes and ground subsidence, the risks to the drivers' safety and the material damage caused by accidents are also increasing. Following this trend, we have developed a system that determines road damage, according to the magnitude of vibration generated without directly intervening the driver when driving. In this paper, we implemented the system using a remote control car (RC car) simulator due to the limitation of the environment in which the actual vehicle is not available in the process of developing the system. In addition, we attached a vibration sensor and GPS sensor to the body of the RC car simulator to measure the vibration value and location information generated by the movement of the vehicle in real-time while driving, and transmitting the corresponding data to the server. In this way, we implemented a system that allows external users to check the damage of roads and the maintenance of the repaired roads based on data more easily than the existing systems. By using this system, we can perform early prediction of road breakage and pattern prediction based on the data. Further, for the RC car simulator, commercialization will be possible by combining it with business in other fields that require flatness.

Design and Implementation of a Motor Vehicle Emergency Situation Detection System (차량용 사고 상황 감지 시스템의 설계 및 구현)

  • Kang, Moon-Seol;Kim, Yu-Sin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2677-2685
    • /
    • 2013
  • Car running data collected from the vehicle is a native image data and sensing data of it. Hence, it can be used as a set of objective data based on which events that took place outside the car can be analyzed and determined. In this paper, we designed and implemented a emergency situation detection system to sense, store, and analyze signals related to car movements, driver's various operation states, collision pulse, etc when a car collision accident occurs on the actual road by sensing and analyzing the car movements and driver's operation status. The suggested system provides information on the driver's reaction right before the collision, operation state of the vehicle, and physical movement. The collected and analyzed data on vehicle running can be utilized to clarify the cause of a collision accident and to handle it in a just manner. Besides, it can contribute to grasping and correcting wrong driving habits of the driver and to saving.

Data Acquisition and Analysis for Running Performance Evaluation of the Electric Train (전동차 주행성능평가를 위한 데이터취득 및 분석)

  • Lee, K.W.;Kim, M.Y.;Baik, K.S.;Shim, J.B.;Chang, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1099-1100
    • /
    • 2006
  • The running of the electric train are done by powering, breaking and coasting. Powering to start and accelerate the rolling stock means driving the three-phase electric induction motors controlled by VVVF inverters which are connected to overhead power line directly(DC) or indirectly(AC, DC/AC). Breaking is achieved by blending control which is the proportional combination between regenerative breaking of VVVF inverter and air pressure control of breaking operating unit(BOU). Therefore, Data obtained during two operation are very important items to evaluate the running performance of RS. This paper has investigated in real time data acquired from VVVF inverter and measured by pressure sensor directly connected to air breaking line(motor car and trailer car). By analyzing data in the region of time and frequency, fundamental methods for eavaluating the running performance of RS quantitatively and objectively have been suggested.

  • PDF

An App Visualization design based on IoT Self-diagnosis Micro Control Unit for car accident prevention

  • Jeong, YiNa;Jeong, EunHee;Lee, ByungKwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1005-1018
    • /
    • 2017
  • This paper proposes an App Visualization (AppV) based on IoT Self-diagnosis Micro Control Unit (ISMCU) for accident prevention. It collects a current status of a vehicle through a sensor, visualizes it on a smart phone and prevents vehicles from accident. The AppV consists of 5 components. First, a Sensor Layer (SL) judges noxious gas from a current vehicle and a driver's driving habit by collecting data from various sensors such as an Accelerator Position Sensor, an O2 sensor, an Oil Pressure Sensor, etc. and computing the concentration of the CO collected by a semiconductor gas sensor. Second, a Wireless Sensor Communication Layer (WSCL) supports Zigbee, Wi-Fi, and Bluetooth protocol so that it may transfer the sensor data collected in the SL to ISMCU and the data in the ISMCU to a Mobile. Third, an ISMCU integrates the transferred sensor information and transfers the integrated result to a Mobile. Fourth, a Mobile App Block Programming Tool (MABPT) is an independent App generation tool that changes to visual data just the vehicle information which drivers want from a smart phone. Fifth, an Embedded Module (EM) records the data collected through a Smart Phone real time in a Cloud Server. Therefore, because the AppV checks a vehicle' fault and bad driving habits that are not known from sensors and performs self-diagnosis through a mobile, it can reduce time and cost spending on accidents caused by a vehicle's fault and noxious gas emitted to the outside.

An Evaporative System Monitoring Method Using a Virtual HC Sensor (가상 HC 센서를 이용한 Evaporative System Monitoring 방법에 대한 연구)

  • 서진호;박재홍;윤형진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.40-47
    • /
    • 2003
  • This paper presents a new evaporative system monitoring method using a virtual HC sensor for an automotive on-board diagnosis. A development was made at providing mathematical expressions from the lambda control information to estimate the HC mass flow purged into the intake manifold from the canister for implementing a virtual HC sensor. The change of the lambda averagevalue reflected the influence of the additional fuel from purging results the sensor estimation of the purged HC amount. Based on this virtual HC sensor, a new evaporative system monitoring method was proposed comparing the amount of purged HC amount with the amount of the HC gas evaporated from the fuel tank and absorbed into the canister. Finally, the method was validated with a simulation using the data logged from the retail car.

Data-Driven Malfunction Analysis from Self-Driving Car Accidents (데이터 오작동에 의한 자율주행 자동차의 사고 사례)

  • Kim, HyunJin;Kim, JinYoung;Paik, Juryon;Jeong, Jin-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.135-136
    • /
    • 2019
  • 센서 데이터의 발전에 따라 자율주행 자동차 산업도 급격히 성장하고 있다. 미국 우버(UBER)는 2015년부터 자율주행 자동차 산업에 뛰어들었고, 국내에서도 '판교 자율주행 셔틀'이 시범운행 되었다. 따라서 자율주행 자동차는 앞으로 우리 삶에 보다 많은 영향을 끼칠 것이 분명하나, 아직 자율주행 자동차가 완벽하게 개발되지 않은 만큼 우리가 예상하지 못한 교통사고 등 새로운 문제가 나타날 위험이 있다. 따라서 본 논문은 자율주행 자동차에 대해 살펴보고 사고 사례를 분석하여 앞으로 나타날 수 있는 사고 유형을 예측하는 것에 목적이 있다.

  • PDF

A Study on The Advanced Altitude Accuracy of GPS with Barometric Altitude Sensor (기압고도계를 적용한 GPS 고도 데이터 성능 향상에 관한 연구)

  • Kim, Nam-Hyeok;Park, Chi-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.18-22
    • /
    • 2012
  • This paper suggests an altitude determination algorithm using GPS and barometric altitude sensors and evaluates the algorithm by digital map contour. A code based GPS altitude has lots of errors so that the car navigation companies can not use this data. Therefore, altitude is calculated by convergence data with GPS and barometric altitude variance in this paper. The modified altitudes are compared with the digital map contour and then this algorithm's effect is evaluated for the car navigation systems.

Analysis of the Shifting Transients from the Passenger Car with an Automatic Transmission considering the Vehicle Model (차량 모델을 고려한 자동변속기 차량의 변속 과도 특성 분석)

  • 공진형;박진호;김정윤;임원식;박영일;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.154-162
    • /
    • 2004
  • In this study, a mathematical model for analyzing the shifting transients of the passenger car with an automatic transmission is proposed. The proposed model comprises a power transmission system and a vehicle system, which are coupled. In order to extract the modeling parameters, on-road car test is carried out. The model is composed of a detailed powertrain, an engine/AT housing, a simplified suspension system, tires and a vehicle body model. On the test, the vehicle accelerations and pitch ratio are measured by using accelerometers and a gyro sensor. The speeds, the brake signal, and the throttle position are taken from sensors which already exist in the vehicle. Considering natural ftequencies, which is calculated from the measured accelerations, and the characteristic equation, vehicle model parameters are identified. Dynamic behaviors during upshift or downshift are simulated using the proposed vehicle model. By comparing and analyzing the simulation result and on-road car test data, the vibration of the Engine/AT housing influences the shifting transients. The effect of model parameters are also studied. Among model parameters, the location of engine mountings influences the vibration of the vehicle body.

Recognition of Model Cars Using Low-Cost Camera in Smart Toy Games (저가 카메라를 이용한 스마트 장난감 게임을 위한 모형 자동차 인식)

  • Minhye Kang;Won-Kee Hong;Jaepil Ko
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.27-32
    • /
    • 2024
  • Recently, there has been a growing interest in integrating physical toys into video gaming within the game content business. This paper introduces a novel method that leverages low-cost camera as an alternative to using sensor attachments to meet this rising demand. We address the limitations associated with low-cost cameras and propose an optical design tailored to the specific environment of model car recognition. We overcome the inherent limitations of low-cost cameras by proposing an optical design specifically tailored for model car recognition. This approach primarily focuses on recognizing the underside of the car and addresses the challenges associated with this particular perspective. Our method employs a transfer learning model that is specifically trained for this task. We have achieved a 100% recognition rate, highlighting the importance of collecting data under various camera exposures. This paper serves as a valuable case study for incorporating low-cost cameras into vision systems.

Slip/Slide Detection Method for the Railway Vehicles using Rotary Type Speed Sensor (회전형 속도검출기를 사용한 철도차량에서 공전, 활주의 검출방법)

  • Lee, Eul-Jae;Kim, Young-Seok;Yoon, Yong-Ki;Lee, Jae-Ho;Ryu, Sang-Hwan;Jeong, Rak-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.405-407
    • /
    • 2000
  • The most generally implemented method to detect the ground speed of the railway vehicles is to use the rotary type speed sensor attached to wheel axle. The Slip or sliding phenomenon on the railway vehicles occurs frequently caused by the weak viscosity of the wheel. Thus, precisely to control the car, the slip/sliding detection system is required. In this paper we proposed for the speed data management system, which uses rotary type speed sensor. Proposed speed management system can detect the slip/sliding with wheel axle as well as correct the generated speed error during in error time, to provide accurate speed and precise location data. The effectiveness for adapting to the railway system is clarified by the computer simulation.

  • PDF