• 제목/요약/키워드: Car License Plate

검색결과 88건 처리시간 0.024초

다수 차량의 후면 번호판 추출 (Rear Car License plate Detection of One More Cars)

  • 김영백;이상용
    • 제어로봇시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.400-404
    • /
    • 2006
  • We suggest a method to detect rear car license plate of one more cars by using blobs. First, we try to search all of the blobs from an input image based on the difference between objects and background. Second, we obtain rectangles enclosed the blobs, and rectangle clusters by considering the properties, for example, the number, size, distance, position. Third, the cluster is verified by the Support Vector Machine. Even if we only use the adaptive binarization as the preprocessing, the detection ratio is very high.

에지 영상의 방향성분 히스토그램 특징을 이용한 자동차 번호판 영역 추출 (Extraction of Car License Plate Region Using Histogram Features of Edge Direction)

  • 김우태;임길택
    • 한국산업정보학회논문지
    • /
    • 제14권3호
    • /
    • pp.1-14
    • /
    • 2009
  • 본 논문에서는 번호판 영역의 추출에 사용될 수 있는 특징 벡터와 이를 이용하여 문자와 비문자를 판별하고 숫자를 인식하는 방법을 제안한다. 제안하는 특징 벡터는 영상의 기울기 벡터에서 얻어지는 에지 영상의 방향 코드 히스토그램으로부터 추출된다. 추출된 특징 벡터를 MD로 구현되는 문자 및 비문자 인식기에 입력하여 문자와 비문자를 판별함으로써 번호판 영역의 위치를 추정하고, 숫자를 인식한다. 실험 결과 제안하는 방법이 문자와 비문자의 정확한 판별, 번호판 영역의 위치 추정 및 숫자의 인식에 유용하게 적용될 수 있음을 알 수 있었다.

라즈베리 파이를 이용한 무선 자동차번호판 영역 추출 모듈 개발 (Development of Wireless License Plate Region Extraction Module Based on Raspberry Pi)

  • 김동경;우종호
    • 한국멀티미디어학회논문지
    • /
    • 제18권10호
    • /
    • pp.1172-1179
    • /
    • 2015
  • A wireless license plate region extracting module is proposed for LPR system controlling multiple gates. This module is cheaply implemented using Raspberry Pi which is open source and high performance. First, as the upper 1/3 of the captured image is discarded as it has no useful information on license plate. Using the OpenCV libraries the edge image is got by Canny algorithm after applying Gaussian filtering to gray image, and the labeling is conducted for 4 consecutive numbers in license plate. These numbers are located using various decision equations, and expanding the numbers region the final license plate region can be extracted. The result image is transferred to Server using wifi direct. Using the proposed module it becomes easy to set up and maintain the LPR system. The experimental results showed that the successful extracting rate was 98.4% using 500 car images with 640 × 480 resolution.

동적인 임계화 방법과 개선된 학습 알고리즘의 신경망을 이용한 차량 번호판 인식 (Recognition of Car License Plate by Using Dynamical Thresholding and Neural Network with Enhanced Learning Algorithm)

  • 김광백;김영주
    • 정보처리학회논문지B
    • /
    • 제9B권1호
    • /
    • pp.119-128
    • /
    • 2002
  • 본 논문에서는 차량 영상으로부터 동적인 임계화 방법과 개선된 성능의 학습 알고리즘에 의한 신경망을 이용하여 차량 번호판 인식방법을 제안하였다. 제안된 방법에서 번호판 영역은 차량 영상의 구조적 속성을 이용한 동적인 임계화 방법과 밀집비율을 함께 고려하여 추출하였다. 추출된 영역으로부터의 개별문자와 숫자는 윤곽선 추적 알고리즘을 이용하여 각각 추출하였으며, 그들의 인식을 위해서 수정된 ART1과 지도 학습 방법을 결합한 개선된 성능의 신경망을 이용하였다. 제안된 방법의 성능을 확인하기 위해서 실제 차량 번호판들을 대상으로 실험한 결과, 기존의 그레이 명암이나 RGB 컬러 정보들을 이용하는 방법보다 추출률이 개선되었으며, 인식성능도 기존의 오류 역전파 알고리즘의 신경망보다 우수한 성능이 있음을 확인하였다.

Novel License Plate Detection Method Based on Heuristic Energy

  • Sarker, Md.Mostafa Kamal;Yoon, Sook;Lee, Jaehwan;Park, Dong Sun
    • 한국통신학회논문지
    • /
    • 제38C권12호
    • /
    • pp.1114-1125
    • /
    • 2013
  • License Plate Detection (LPD) is a key component in automatic license plate recognition system. Despite the success of License Plate Recognition (LPR) methods in the past decades, the problem is quite a challenge due to the diversity of plate formats and multiform outdoor illumination conditions during image acquisition. This paper aims at automatical detection of car license plates via image processing techniques. In this paper, we proposed a real-time and robust method for license plate detection using Heuristic Energy Map(HEM). In the vehicle image, the region of license plate contains many components or edges. We obtain the edge energy values of an image by using the box filter and search for the license plate region with high energy values. Using this energy value information or Heuristic Energy Map(HEM), we can easily detect the license plate region from vehicle image with a very high possibilities. The proposed method consists two main steps: Region of Interest (ROI) Detection and License Plate Detection. This method has better performance in speed and accuracy than the most of existing methods used for license plate detection. The proposed method can detect a license plate within 130 milliseconds and its detection rate is 99.2% on a 3.10-GHz Intel Core i3-2100(with 4.00 GB of RAM) personal computer.

기울어진 차량 번호판 영역의 검출 (The Detection of Slanted Car License Plate Region)

  • 문성원;장언동;송영준
    • 한국콘텐츠학회논문지
    • /
    • 제4권3호
    • /
    • pp.125-130
    • /
    • 2004
  • 본 논문에서는 디지털 카메라를 통하여 입력된 차량 영상으로부터 차량 번호판을 인식하는 방법을 제안한다. 최근 몇 년간 차량 번호판 영상을 인식하는 기술은 많은 발전을 이루어 왔다. 정확한 인식을 위한 핵심 기술은 차량 번호판 영역의 정확한 추출이다. 에지 정보나 칼라 정보로 번호판 영역을 추출할 경우, 번호판을 보는 시각에 따른 기울어진 번호판의 정확한 영역 추출이 어렵기 때문에 기존의 번호판 인식은 차량의 정면에서 촬영된 영상을 사용하였고 번호판 영역에 경사나 기울기를 고려하지 않았다. 본 연구에서는 입력 영상의 경사나 기울어진 입력 영상에 대한 인식이 가능한 형태로 변환하는 데 중점을 둔다. 그에 따라 영상에서 번호판의 위치 및 기울어짐 혹은 높낮이가 정면에서 벗어나더라도 번호판 영역 추출을 가능토록 칼라 정보를 이용하여 후보 영역을 추출한 후 선형 회귀 방정식을 사용하여 보다 정확하게 차량 번호판 영역을 추출하였다. 실험 결과 92%의 번호판 검출율을 보였으며, 50$^{\circ}$ 정도 기울어진 번호판에서도 문자의 인식이 가능함을 확인하였다.

  • PDF

Precise Detection of Car License Plates by Locating Main Characters

  • Lee, Dae-Ho;Choi, Jin-Hyuk
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.376-382
    • /
    • 2010
  • We propose a novel method to precisely detect car license plates by locating main characters, which are printed with large font size. The regions of the main characters are directly detected without detecting the plate region boundaries, so that license regions can be detected more precisely than by other existing methods. To generate a binary image, multiple thresholds are applied, and segmented regions are selected from multiple binarized images by a criterion of size and compactness. We do not employ any character matching methods, so that many candidates for main character groups are detected; thus, we use a neural network to reject non-main character groups from the candidates. The relation of the character regions and the intensity statistics are used as the input to the neural network for classification. The detection performance has been investigated on real images captured under various illumination conditions for 1000 vehicles. 980 plates were correctly detected, and almost all non-detected plates were so stained that their characters could not be isolated for character recognition. In addition, the processing time is fast enough for a commercial automatic license plate recognition system. Therefore, the proposed method can be used for recognition systems with high performance and fast processing.

호텔링 변환을 이용한 자동차 번호판 인식시스템에 관한 연구 (License Plate Recognition System Using Hotelling Transform)

  • 김태우;강용석
    • 한국정보전자통신기술학회논문지
    • /
    • 제2권1호
    • /
    • pp.29-35
    • /
    • 2009
  • 본 논문에서는 차량의 후면에서 촬영한 영상을 이용하여 효과적으로 번호판을 추출하고, 그 안에 표기된 문자를 인식하는 방법을 제안한다. 기존의 연구방법은 전체영상에 대하여 전처리를 수행하여 에지(edge)영상을 구하여 이진화 한다. 이진화된 영상에서 허프(Hough)변환을 수행하여 수평, 수직선을 구하고, 번호판의 특징을 이용하여 번호판 영역을 추출한다. 이 방법의 문제점은 처리시간이 많이 소요되므로 실시간처리가 곤란하다는 점과 야간관 같이 명암상태가 불규칙하고 영상에서 번호판 테두리가 나타나지 않으면 번호판 영역추출을 할 수 없다는 점이다. 또한 차량의 후면에서 촬영한 영상에서 번호판 영역의 명암값 변화의 특성을 이용하여 번호판 영역에서 숫자폭, 배경영역과 숫자영역의 명암차를 조사하여 숫자영역임을 확인하고, 확인된 숫자와 숫자사이의 거리를 조사하여 번호판 영역을 추출한다. 본 연구는 기존방법의 번호판 테두리 훼손에 따른 번호판 영역추출 실패의 문제점을 해결하고 시간 소요의 문제를 실시간안에 처리 함으로써 실용적 응용이 가능하다. 실험 결과 100장의 샘플영상으로 실험한 결과 멀리 있는 자동차 영상에서도 자동으로 번호판을 판독할 수 있었으며, 번호판 추출에 실패한 영상은 13%를 나타내었고, 문자인식에 실패한 영상은 0.4%의 결과를 나타내었다.

  • PDF

자동차번호판 이진화를 위한 개선된 퍼지 이진화 방법 (Enhanced Fuzzy Binarization Method for Car License Plate Binarization)

  • 조재현
    • 한국전자통신학회논문지
    • /
    • 제6권2호
    • /
    • pp.231-236
    • /
    • 2011
  • 이진화 알고리즘은 영상인식, 영상 분석 등 다양한 영상 처리 분야의 전처리 과정으로 자주 적용되고 있다. 영상 이진화는 임계치의 설정에 따라 처리 성능이 좌우되므로 영상처리부분에서 매우 중요하다고 할 수 있다. 대부분의 기존 이진화 방법은 배경과 물체의 명도차이가 큰 경우에는 히스토그램이나 픽셀의 평균값을 이용하여 양호한 임계치를 얻을 수 있으나, 배경과 물체의 밝기 차이가 크지 않은 경우에는 적절한 임계치를 얻기 어렵다. 따라서 본 논문에서는 차량 번호판을 이진화 하기 위해 차량 영상의 명도를 2구간으로 구분하고 각각의 구간에 퍼지 소속 함수를 적용하여 영상을 이진화하는 개선된 퍼지 이진화 방법을 제안하고자 한다. 제안된 이진화 방법의 성능을 평가하기 위하여 차량번호판 영상에 적용한 결과, 기존의 이진화 방법들보다 효율적인 것을 확인하였다.

숫자 영역 탐색에 기반한 자동차 번호판 추출 (Car License Plate Extraction Based on Detection of Numeral Regions)

  • 이득용;오일석
    • 한국ITS학회 논문지
    • /
    • 제7권1호
    • /
    • pp.59-67
    • /
    • 2008
  • 이 논문은 우리나라 차량 영상에서 번호판 영역을 추출하는 알고리즘을 제안한다. 이 논문의 아이디어는 차량 영상에서 네 개의 숫자를 찾고 그 정보를 이용하여 번호판 영역을 분할하는 것이다. 이 방법으로 번호판 영역을 찾으면 네 개 숫자 영역도 더불어 얻게 되는 장점을 가진다. 첫 단계는 입력된 영상에서 적절한 크기의 연결 요소를 검출하고 이들을 군집화 한다. 둘째 군집화 된 연결요소들을 바탕으로 숫자 네 개 (4-digits)후보를 생성한다. 세 번째 단계는 4-digits후보들을 인식하여 숫자일 신뢰도를 측정한다. 마지막으로 후보 영역 중 신뢰도가 가장 높은 영역을 번호판 영역으로 추출한다 신뢰도를 얻기 위해 Perfect Metrics 분류 알고리즘을 사용하였다. 제안하는 방법을 주간 영상 4600장과 야간 영상 264장으로 테스트 한 결과 각각 97.23%와 95.45%의 검출률과 0.09%와 0.11%의 오검출률을 얻었다.

  • PDF