We suggest a method to detect rear car license plate of one more cars by using blobs. First, we try to search all of the blobs from an input image based on the difference between objects and background. Second, we obtain rectangles enclosed the blobs, and rectangle clusters by considering the properties, for example, the number, size, distance, position. Third, the cluster is verified by the Support Vector Machine. Even if we only use the adaptive binarization as the preprocessing, the detection ratio is very high.
본 논문에서는 번호판 영역의 추출에 사용될 수 있는 특징 벡터와 이를 이용하여 문자와 비문자를 판별하고 숫자를 인식하는 방법을 제안한다. 제안하는 특징 벡터는 영상의 기울기 벡터에서 얻어지는 에지 영상의 방향 코드 히스토그램으로부터 추출된다. 추출된 특징 벡터를 MD로 구현되는 문자 및 비문자 인식기에 입력하여 문자와 비문자를 판별함으로써 번호판 영역의 위치를 추정하고, 숫자를 인식한다. 실험 결과 제안하는 방법이 문자와 비문자의 정확한 판별, 번호판 영역의 위치 추정 및 숫자의 인식에 유용하게 적용될 수 있음을 알 수 있었다.
A wireless license plate region extracting module is proposed for LPR system controlling multiple gates. This module is cheaply implemented using Raspberry Pi which is open source and high performance. First, as the upper 1/3 of the captured image is discarded as it has no useful information on license plate. Using the OpenCV libraries the edge image is got by Canny algorithm after applying Gaussian filtering to gray image, and the labeling is conducted for 4 consecutive numbers in license plate. These numbers are located using various decision equations, and expanding the numbers region the final license plate region can be extracted. The result image is transferred to Server using wifi direct. Using the proposed module it becomes easy to set up and maintain the LPR system. The experimental results showed that the successful extracting rate was 98.4% using 500 car images with 640 × 480 resolution.
본 논문에서는 차량 영상으로부터 동적인 임계화 방법과 개선된 성능의 학습 알고리즘에 의한 신경망을 이용하여 차량 번호판 인식방법을 제안하였다. 제안된 방법에서 번호판 영역은 차량 영상의 구조적 속성을 이용한 동적인 임계화 방법과 밀집비율을 함께 고려하여 추출하였다. 추출된 영역으로부터의 개별문자와 숫자는 윤곽선 추적 알고리즘을 이용하여 각각 추출하였으며, 그들의 인식을 위해서 수정된 ART1과 지도 학습 방법을 결합한 개선된 성능의 신경망을 이용하였다. 제안된 방법의 성능을 확인하기 위해서 실제 차량 번호판들을 대상으로 실험한 결과, 기존의 그레이 명암이나 RGB 컬러 정보들을 이용하는 방법보다 추출률이 개선되었으며, 인식성능도 기존의 오류 역전파 알고리즘의 신경망보다 우수한 성능이 있음을 확인하였다.
Sarker, Md.Mostafa Kamal;Yoon, Sook;Lee, Jaehwan;Park, Dong Sun
한국통신학회논문지
/
제38C권12호
/
pp.1114-1125
/
2013
License Plate Detection (LPD) is a key component in automatic license plate recognition system. Despite the success of License Plate Recognition (LPR) methods in the past decades, the problem is quite a challenge due to the diversity of plate formats and multiform outdoor illumination conditions during image acquisition. This paper aims at automatical detection of car license plates via image processing techniques. In this paper, we proposed a real-time and robust method for license plate detection using Heuristic Energy Map(HEM). In the vehicle image, the region of license plate contains many components or edges. We obtain the edge energy values of an image by using the box filter and search for the license plate region with high energy values. Using this energy value information or Heuristic Energy Map(HEM), we can easily detect the license plate region from vehicle image with a very high possibilities. The proposed method consists two main steps: Region of Interest (ROI) Detection and License Plate Detection. This method has better performance in speed and accuracy than the most of existing methods used for license plate detection. The proposed method can detect a license plate within 130 milliseconds and its detection rate is 99.2% on a 3.10-GHz Intel Core i3-2100(with 4.00 GB of RAM) personal computer.
본 논문에서는 디지털 카메라를 통하여 입력된 차량 영상으로부터 차량 번호판을 인식하는 방법을 제안한다. 최근 몇 년간 차량 번호판 영상을 인식하는 기술은 많은 발전을 이루어 왔다. 정확한 인식을 위한 핵심 기술은 차량 번호판 영역의 정확한 추출이다. 에지 정보나 칼라 정보로 번호판 영역을 추출할 경우, 번호판을 보는 시각에 따른 기울어진 번호판의 정확한 영역 추출이 어렵기 때문에 기존의 번호판 인식은 차량의 정면에서 촬영된 영상을 사용하였고 번호판 영역에 경사나 기울기를 고려하지 않았다. 본 연구에서는 입력 영상의 경사나 기울어진 입력 영상에 대한 인식이 가능한 형태로 변환하는 데 중점을 둔다. 그에 따라 영상에서 번호판의 위치 및 기울어짐 혹은 높낮이가 정면에서 벗어나더라도 번호판 영역 추출을 가능토록 칼라 정보를 이용하여 후보 영역을 추출한 후 선형 회귀 방정식을 사용하여 보다 정확하게 차량 번호판 영역을 추출하였다. 실험 결과 92%의 번호판 검출율을 보였으며, 50$^{\circ}$ 정도 기울어진 번호판에서도 문자의 인식이 가능함을 확인하였다.
We propose a novel method to precisely detect car license plates by locating main characters, which are printed with large font size. The regions of the main characters are directly detected without detecting the plate region boundaries, so that license regions can be detected more precisely than by other existing methods. To generate a binary image, multiple thresholds are applied, and segmented regions are selected from multiple binarized images by a criterion of size and compactness. We do not employ any character matching methods, so that many candidates for main character groups are detected; thus, we use a neural network to reject non-main character groups from the candidates. The relation of the character regions and the intensity statistics are used as the input to the neural network for classification. The detection performance has been investigated on real images captured under various illumination conditions for 1000 vehicles. 980 plates were correctly detected, and almost all non-detected plates were so stained that their characters could not be isolated for character recognition. In addition, the processing time is fast enough for a commercial automatic license plate recognition system. Therefore, the proposed method can be used for recognition systems with high performance and fast processing.
본 논문에서는 차량의 후면에서 촬영한 영상을 이용하여 효과적으로 번호판을 추출하고, 그 안에 표기된 문자를 인식하는 방법을 제안한다. 기존의 연구방법은 전체영상에 대하여 전처리를 수행하여 에지(edge)영상을 구하여 이진화 한다. 이진화된 영상에서 허프(Hough)변환을 수행하여 수평, 수직선을 구하고, 번호판의 특징을 이용하여 번호판 영역을 추출한다. 이 방법의 문제점은 처리시간이 많이 소요되므로 실시간처리가 곤란하다는 점과 야간관 같이 명암상태가 불규칙하고 영상에서 번호판 테두리가 나타나지 않으면 번호판 영역추출을 할 수 없다는 점이다. 또한 차량의 후면에서 촬영한 영상에서 번호판 영역의 명암값 변화의 특성을 이용하여 번호판 영역에서 숫자폭, 배경영역과 숫자영역의 명암차를 조사하여 숫자영역임을 확인하고, 확인된 숫자와 숫자사이의 거리를 조사하여 번호판 영역을 추출한다. 본 연구는 기존방법의 번호판 테두리 훼손에 따른 번호판 영역추출 실패의 문제점을 해결하고 시간 소요의 문제를 실시간안에 처리 함으로써 실용적 응용이 가능하다. 실험 결과 100장의 샘플영상으로 실험한 결과 멀리 있는 자동차 영상에서도 자동으로 번호판을 판독할 수 있었으며, 번호판 추출에 실패한 영상은 13%를 나타내었고, 문자인식에 실패한 영상은 0.4%의 결과를 나타내었다.
이진화 알고리즘은 영상인식, 영상 분석 등 다양한 영상 처리 분야의 전처리 과정으로 자주 적용되고 있다. 영상 이진화는 임계치의 설정에 따라 처리 성능이 좌우되므로 영상처리부분에서 매우 중요하다고 할 수 있다. 대부분의 기존 이진화 방법은 배경과 물체의 명도차이가 큰 경우에는 히스토그램이나 픽셀의 평균값을 이용하여 양호한 임계치를 얻을 수 있으나, 배경과 물체의 밝기 차이가 크지 않은 경우에는 적절한 임계치를 얻기 어렵다. 따라서 본 논문에서는 차량 번호판을 이진화 하기 위해 차량 영상의 명도를 2구간으로 구분하고 각각의 구간에 퍼지 소속 함수를 적용하여 영상을 이진화하는 개선된 퍼지 이진화 방법을 제안하고자 한다. 제안된 이진화 방법의 성능을 평가하기 위하여 차량번호판 영상에 적용한 결과, 기존의 이진화 방법들보다 효율적인 것을 확인하였다.
이 논문은 우리나라 차량 영상에서 번호판 영역을 추출하는 알고리즘을 제안한다. 이 논문의 아이디어는 차량 영상에서 네 개의 숫자를 찾고 그 정보를 이용하여 번호판 영역을 분할하는 것이다. 이 방법으로 번호판 영역을 찾으면 네 개 숫자 영역도 더불어 얻게 되는 장점을 가진다. 첫 단계는 입력된 영상에서 적절한 크기의 연결 요소를 검출하고 이들을 군집화 한다. 둘째 군집화 된 연결요소들을 바탕으로 숫자 네 개 (4-digits)후보를 생성한다. 세 번째 단계는 4-digits후보들을 인식하여 숫자일 신뢰도를 측정한다. 마지막으로 후보 영역 중 신뢰도가 가장 높은 영역을 번호판 영역으로 추출한다 신뢰도를 얻기 위해 Perfect Metrics 분류 알고리즘을 사용하였다. 제안하는 방법을 주간 영상 4600장과 야간 영상 264장으로 테스트 한 결과 각각 97.23%와 95.45%의 검출률과 0.09%와 0.11%의 오검출률을 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.