• Title/Summary/Keyword: Capacity Evaluation

Search Result 3,319, Processing Time 0.027 seconds

Load carrying capacity Evaluation Considering the Structural Characteristics of Bridge Bearing (교량받침의 거동특성을 고려한 내하력 평가)

  • Park, Kil-Hyun;Yang, Seung-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.209-216
    • /
    • 2003
  • Load carrying capacity evaluation is very important element in maintenance of bridge. There are several reasons about differences in deflection caused by loading test and structural analysis. Especially when we do modeling uniformly without considering real structural characteristics of support, this problem can be more deepened. This computes modification factor high so we may evaluate the load carrying capacity more than fact. In this study, we do structural analysis nearing real structure with negative bending moment of support that computes considering structural characteristics of support, and then evaluate load carrying capacity.

Evaluation of Structural Performance of RC Beams retrofitted PVA Fiber to the Change of Replacement Ratio of Recycled Fine Aggregates and Blast Furnace Slag (고로슬래그 미분말 및 순환잔골재를 적용한 PVA섬유 보강 철근콘크리트 보의 구조성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.8
    • /
    • pp.3-11
    • /
    • 2018
  • In this study, total nine R/C beams, designed by the PVA Fiber with ground granulated blast furnace slag and recycled fine aggregate were constructed and tested under monotonic loading. In the material development, micromechanics was adopted to properly select the optimized range of the composite based on steady-state cracking theory and experimental studies on the matrix and interracial properties. Experimental programs were carried out to improve and evaluate the structural performance of the test specimens: the load-displacement, the failure mode, the maximum strength, and ductility capacity were assessed. Test results showed that test specimens (BSPR-20, 40) was increased the maximum load carrying capacity by 3~6% and the ductility capacity by 9~14% in comparison with the standard specimen (BSS). And the specimens (BSPR-60, 80, 100) was decreased the maximum load carrying capacity by 0~4% and the ductility capacity by 79% in comparison with the standard specimen (BSS) respectively.

Seismic capacity evaluation of fire-damaged cabinet facility in a nuclear power plant

  • Nahar, Tahmina Tasnim;Rahman, Md Motiur;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1331-1344
    • /
    • 2021
  • This study is to evaluate the seismic capacity of the fire-damaged cabinet facility in a nuclear power plant (NPP). A prototype of an electrical cabinet is modeled using OpenSees for the numerical simulation. To capture the nonlinear behavior of the cabinet, the constitutive law of the material model under the fire environment is considered. The experimental record from the impact hammer test is extracted trough the frequency-domain decomposition (FDD) method, which is used to verify the effectiveness of the numerical model through modal assurance criteria (MAC). Assuming different temperatures, the nonlinear time history analysis is conducted using a set of fifty earthquakes and the seismic outputs are investigated by the fragility analysis. To get a threshold of intensity measure, the Monte Carlo Simulation (MCS) is adopted for uncertainty reduction purposes. Finally, a capacity estimation model has been proposed through the investigation, which will be helpful for the engineer or NPP operator to evaluate the fire-damaged cabinet strength under seismic excitation. This capacity model is presented in terms of the High Confidence of Low Probability of Failure (HCLPF) point. The results are validated by the proper judgment and can be used to analyze the influences of fire on the electrical cabinet.

Risk Evaluation and Uncertainty Analysis in Hydraulic Design system (수공구조물 설계 시스템의 위험도 평가와 불확실성 해석)

  • Chang, Suk-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.4
    • /
    • pp.194-200
    • /
    • 1998
  • Risk, probability of failure, which includes various uncertainties and influential factors of performance should be accounted for in engineering system. Recently, several different methods to analysis risk evaluation evolved and one of the practical method is FOSM (First Order Second Moment Method ). FOSM method is derived in terms of terms coefficient of variance to uncertainties which influence various factor. For risk evaluation and uncertainty analysis in hydraulic design system, load-capacity relationship is adopted in this paper. Sample catchment with design of sewer system is applied, which plots safety factor vs. risk. Risk evaluation and uncertainty analysis are very to important develop optimal design model in hydraulic system

  • PDF

Optimal Capacity Design and Economic Evaluation of Hybrid Generation Systems Based on the Load Characteristics (부하특성에 따른 복합발전시스템의 최적용량 설계 및 경제성 분석)

  • Lim, Jong Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1103-1109
    • /
    • 2013
  • This paper presents an optimal capacity design of a Hybrid generation system based on economical evaluation for various loads. Optimal sizes of a standalone and grid connection wind- PV hybrid systems were designed for normal, residential and industrial loads using HOMER (Hybrid Optimization Model for Electronic Renewable). Their economical evaluation were performed and compared with a diesel generation system that covers the same loads. The results showed that the stand alone hybrid generation system can be more economical than a diesel generation system for long term operation.

A Study on the Photovoltaic System Inverter Sizing (태양광발전시스템 인버터 용량 산정에 관한 연구)

  • Lee, Kyung-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.804-810
    • /
    • 2016
  • Photovoltaic system construction of the module capacity in domestic is specified criteria to less than 105% of the inverter capacity. However, the modules are installed in the outdoor actual output is reduced due to factors such as the irradiation intensity, module surface temperature. Thus, it needs the capacity of the inverter to be designed according to the actual module output. In this paper, the first approach to find the actual module output is to analyze the actual PV system monitoring data. Next, four sites where the loss analysis, system utilization, inverter utilization, and the ratio of the inverter overload are performed using PVSYST software. By changing the ratio of the module capacity, the inverter capacity of the site B is confirmed 20% less than the module capacity. Site A, C, D are identified as the ratio of the inverter capacity is 10% less than the module capacity.

Nonlinear Dynamic Capacity of Reinforced Concrete Special Moment Frame Buildings (철근 콘크리트 특수 모멘트 골조 건물의 비탄성 동적 성능값)

  • Kim, Tae-Wan;Kim, Tae-Jin
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.209-216
    • /
    • 2006
  • For evaluation of building performance, a nonlinear dynamic capacity of the building is a key parameter. In this study, an reinforced concrete special moment resisting frame building was chosen to study the process of determining the nonlinear dynamic capacity. The building, which was designed by IBC 2003 representing new codes, was composed of special moment resisting frames in the perimeter and internal frames inside the building. The capacity, which is inter-story drift capacity, consists of two categories, local and global collapses. Global collapse capacity was determined by incremental dynamic analysis. Local collapse capacity was determined by the same method except for utilizing damage index. In audition to this, it was also investigated that the effect of including internal frames designed by gravity load in the analysis. Results showed that the damage index is a useful tool for determining local collapse. Furthermore, including the internal frames with special frames in the analysis is very important in determining the capacity of a building so both must be considered at the same time.

  • PDF

Evaluation of Tank Capacity of Rainwater Harvesting System to Secure Economic Feasibility and Sensitivity Analysis (경제성 확보를 위한 빗물이용시설의 규모 산정 및 민감도 분석)

  • Mun, Jung-Soo;Kim, Ha-Na;Park, Jong-Bin;Lee, Jung-Hun;Kim, Ree-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.191-199
    • /
    • 2012
  • Rainwater harvesting systems (RWHS), one of measures for on site rainwater management, have been promoted by laws, regulations and guidelines and have been increased. However, more evaluation of economic feasibility on RWHS is still needed due to seasonal imbalance of rainfall and little experiences and analysis on design and operation of RWHS. In this study, we investigated tank capacity of RWHS to secure economic validity considering catchment area and water demand, which is affected by building scale. Moreover, sensitivity analysis was performed to examine the effect of design factors, cost items and increase rate of water service charge on economic feasibility. The BCR (benefit cost ratio) is proportional to the increase in tank capacity. It is increased steeply in small tank capacity due to the effect of cost and, since then, gently in middle and large tank capacity. In case of 0.05 in the rate of tank volume to catchment area and 0.005 in water demand to catchment area, BCR was over one from the tank capacity of 160 $m^{3}$ taking into account of private benefits and from the tank capacity of 100 $m^{3}$ taking into account of private and public benefits. Sensitivity analysis shows that increase of water demand can improve BCR values with little cost so that it is needed to extend application of rainwater use and select a proper range of design factor. Decrease of construction and maintenance cost reduced the tank volume to secure economic validity. Finally, increase rate of water service charge had considerable impact on economic feasibility.

Evaluation of Drain Capacity in Tunnel Drainage System using Drainboard (바닥배수판을 이용한 터널 배수시스템의 통수능 평가)

  • Bae, Gyu-Jin;Lee, Gyu-Phil;Lee, Sung-Won;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • This study proposes a new concept of a tunnel central drainage system by using a drain board to make a breakthrough on difficulties in the installation of conventional drainage system and draw-down of its drain capacity especially in long tunnels. A fundamental study has been performed for evaluation of the drain capacity of the planar drainage system adopted in this study. In fact, the system proposed makes possible to omit the side, transverse as well as central drainage pipes required in the conventional system, even if its drain capacity and any guideline for design are not available to date. In this circumstance, it is carried out to investigate the correlation between drain capacities and, shapes and posit ions of the columns of the drain board in terms of a variety of water inflows through hydrological model tests. It is shown from the tests that a drain capacity is highly influenced by the shape and the distance between the columns of a drain board in flowing direction, and a round rectangular shape of the columns leads to the highest capacity of drainage. And also, the shorter distance between the columns in flowing direction, the higher drain capacity would be achieved.

  • PDF

Assessment of Village Health Worker Training Program in Tuguegarao, Philippine

  • Kim, Jung-Min;Koh, Kwang-Wook;Oak, Chul-Ho;Jung, Woo-Hyuk;Kim, Sung-Hyun;Park, Dae-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.42 no.6
    • /
    • pp.377-385
    • /
    • 2009
  • Objectives : This study was performed to evaluate the effectiveness of 'village health worker training program' which aimed to build community participatory health promotion capacity of community leaders in villages of low developed country and to develop methods for further development of the program. Methods : The intervention group were 134 community leaders from 25 barangays (village). Control group were 149 form 4 barangays. Intervention group participated 3-day training program. Questionnaire was developed based on 'Health Promotion Capacity Checklist' which assessed capacity in 4 feathers; 'knowledge', 'skill', 'commitment', and 'resource'. Each feather was assessed in 4 point rating scale. Capacity scores between intervention group and control group were examined to identify changes between the pre- and post-intervention periods. A qualitative evaluation of the program was conducted to assess the appropriateness of the program. The program was conducted in Tuguegarao city, Philippine in January, 2009. Results : The result showed significant increases in the total health promotion capacity and each feather of health promotion capacities between pre and post assessment of intervention group. But there was no significant change in that of control group. Participants marked high level of satisfaction for preparedness, selection of main subjects and education method. Qualitative evaluation revealed that training program facilitated community participatory health promotion capacity of participants. Conclusions : This study suggested that the Village health worker training program is effective for building health promotion capacity of community leaders and it can be a main method for helping low developed countries with further development.