• Title/Summary/Keyword: Capacitor design method

Search Result 247, Processing Time 0.034 seconds

A Sub-${\mu}$W 22-kHz CMOS Oscillator for Ultra Low Power Radio (극저전력 무선통신을 위한 Sub-${\mu}$W 22-kHz CMOS 발진기)

  • Na, Young-Ho;Kim, Jong-Sik;Kim, Hyun;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.12
    • /
    • pp.68-74
    • /
    • 2010
  • A sub-${\mu}$W CMOS Wien-Bridge oscillator for ultra low power (ULP) radio applications is presented. The Wien-Bridge oscillator is based on an non-inverting opamp amplifier with a closed-loop gain $1+R_2/R_1$ as a means of providing necessary loop gain. An additional RC network provides appropriate phase shift for satisfying the Barkhausen oscillation condition at the given frequency of 1/($2{\pi}RC$). In this design, we propose a novel loop gain control method based on a variable capacitor network instead of a rather conventional variable resistor network. Implemented in $0.18{\mu}m$ CMOS, the oscillator consumes only 560 nA at the oscillation frequency of 22 kHz.

Design of the DC-DC Buck Converter for Mobile Application Using PWM/PFM Mode (PWM/PFM 모드를 이용한 모바일용 벅 변환기 설계)

  • Park, Li-Min;Jung, Hak-Jin;Yoo, Tai-Kyung;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1667-1675
    • /
    • 2010
  • This paper presents a high efficiency DC-DC buck converter for mobile device. The circuit employes simplified compensation circuit for its portability and for high efficiency at stand-by mode. This device operates at PFM mode when it enters stand-by mode(light load). In order to place the compensation circuit on chip, the capacitor multiplier method is employed, such that it can minimize the compensation block size of the error amplifier down to 30%. The measurement results show that the buck converter provides a peak efficiency of 93% on PWM mode, and 92.3% on PFM mode. The converter has been fabricated with a $0.35{\mu}m$ CMOS technology. The input voltage of the buck converter ranges from 2.5V to 3.3V and it generates the output of 3.3V.

A Study on the High Frequency Resonant Inverter of Class D SEPP type using LS-ZVS-LSTC (LS-ZVS-LSTC를 이용한 D급 SEPP형 고주파 공진 인버터에 관한 연구)

  • Park, Dong-Han;Choi, Byeong-Joo;Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.260-268
    • /
    • 2020
  • This paper presents the high frequency resonant inverter of class D SEPP(Single-Ended Push Pull) type using LS-ZVS-LSTC, which can reduce the switching losses during the turn-on and turn-off switching time. The analysis of high frequency resonant inverter using LS-ZVS-LSTC(Low-loss Turn-off Snubber Capacitor) proposed in this paper is described in general by adopting the normalized parameters. The operating characteristics of the proposed high frequency resonant inverter were also evaluated by using the control parameters such as the normalized control frequency(μ), the normalized load time constant(τ), the coupling factor(κ) and so on. Based on the characteristic values through the characteristics of evaluation, an example of the design method of the 1.8[kW] class D SEPP type high frequency inverter is suggested, and the validity of the theoretical analysis is verified using the experimental data.

Boost Type ZVS-PWM Chopper-Fed DC-DC Power Converter with Load-Side Auxiliary Resonant Snubber and Its Performance Evaluations

  • Ogura, Koki;Chandhaket, Srawouth;Ahmed, Tarek;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.147-154
    • /
    • 2003
  • This paper presents a high-frequency boost type ZVS-PWM chopper-fed DC-DC power converter with a single active auxiliary edge-resonant snubber at the load stage which can be designed for power conditioners such as solar photovoltaic generation, fuel cell generation, battery and super capacitor energy storages. Its principle operation in steady-state is described in addition to a prototype setup. The experimental results of boost type ZVS-PWM chopper proposed here, are evaluated and verified with a practical design model in terms of its switching voltage and current waveforms, the switching v-i trajectory and the temperature performance of IGBT module, the actual power conversion efficiency, and the EMI of radiated and conducted emissions, and then discussed and compared with the hard switching scheme from an experimental point of view. Finally, this paper proposes a practical method to suppress parasitic oscillation due to the active auxiliary resonant switch at ZCS turn-off mode transition with the aid of an additional lossless clamping diode loop, and can be reduced the EMI conducted emission.

Analysis of Human Body Channel Based on Impulse Response Signals (임펄스 응답 신호를 이용한 인체 채널 분석)

  • Kang, Taewook;Lee, Jae-Jin;Oh, Wangrok
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.36-42
    • /
    • 2022
  • This study presents an analysis of the human body channel as an electric signal path using body impulse response (BIR). The human body communications (HBC) has recently emerged as an effective signal transmission method to create wireless body area networks (WBAN). We provide body channel characteristics based on measured BIR in a proper experimental environment for the HBC using capacitive coupling with a customized channel sounding device, which can be applied as a guideline for the HBC system design. The frequency response of the BIR, extracted by a customized signal processing for the measure signals, shows the channel path loss (CPS) between 0 MHz and 100 MHz with an average CPS of approximately 46.8 dB. In addition, the relative noise power distributions can provide estimations on the signal to noise ratio at the HBC receiver in terms of capacitor and resistor values in the measured frequency band and the frequency band lower than 3 MHz considering the baseband signal detection.

A Single-Bit 2nd-Order CIFF Delta-Sigma Modulator for Precision Measurement of Battery Current (배터리 전류의 정밀 측정을 위한 단일 비트 2차 CIFF 구조 델타 시그마 모듈레이터)

  • Bae, Gi-Gyeong;Cheon, Ji-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.184-196
    • /
    • 2020
  • In this paper, a single-bit 2nd-order delta-sigma modulator with the architecture of cascaded-of-integrator feedforward (CIFF) is proposed for precision measurement of current flowing through a secondary cell battery in a battery management system (BMS). The proposed modulator implements two switched capacitor integrators and a single-bit comparator with peripheral circuits such as a non-overlapping clock generator and a bias circuit. The proposed structure is designed to be applied to low-side current sensing method with low common mode input voltage. Using the low-side current measurement method has the advantage of reducing the burden on the circuit design. In addition, the ±30mV input voltage is resolved by the ADC with 15-bit resolution, eliminating the need for an additional programmable gain amplifier (PGA). The proposed a single-bit 2nd-order delta-sigma modulator has been implemented in a 350-nm CMOS process. It achieves 95.46-dB signal-to-noise-and-distortion ratio (SNDR), 96.01-dB spurious-free dynamic range (SFDR), and 15.56-bit effective-number-of-bits (ENOB) with an oversampling ratio (OSR) of 400 for 5-kHz bandwidth. The area and power consumption of the delta-sigma modulator are 670×490 ㎛2 and 414 ㎼, respectively.

Design of Synchronous 256-bit OTP Memory (동기식 256-bit OTP 메모리 설계)

  • Li, Long-Zhen;Kim, Tae-Hoon;Shim, Oe-Yong;Park, Mu-Hun;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1227-1234
    • /
    • 2008
  • In this paper is designed a 256-bit synchronous OTP(one-time programmable) memory required in application fields such as automobile appliance power ICs, display ICs, and CMOS image sensors. A 256-bit synchronous memory cell consists of NMOS capacitor as antifuse and access transistor without a high-voltage blocking transistor. A gate bias voltage circuit for the additional blocking transistor is removed since logic supply voltage VDD(=1.5V) and external program voltage VPPE(=5.5V) are used instead of conventional three supply voltages. And loading current of cell to be programmed increases according to RON(on resistance) of the antifuse and process variation in case of the voltage driving without current constraint in programming. Therefore, there is a problem that program voltage can be increased relatively due to resistive voltage drop on supply voltage VPP. And so loading current can be made to flow constantly by using the current driving method instead of the voltage driving counterpart in programming. Therefore, program voltage VPP can be lowered from 5.9V to 5.5V when measurement is done on the manufactured wafer. And the sens amplifier circuit is simplified by using the sens amplifier of clocked inverter type instead of the conventional current sent amplifier. The synchronous OTP of 256 bits is designed with Magnachip $0.13{\mu}m$ CMOS process. The layout area if $298.4{\times}314{\mu}m2$.