• 제목/요약/키워드: Capacitor current control model

검색결과 51건 처리시간 0.024초

Improved DC Model and Transfer Functions for the Negative Output Elementary Super Lift Luo Converter

  • Wang, Faqiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1082-1089
    • /
    • 2017
  • Negative output elementary super lift Luo converter (NOESLLC), which has the significant advantages including high-voltage transfer gain, high efficiency, high power density, and reduced output voltage/inductor current ripples when compared to the traditional DC-DC converters, is an attractive DC-DC converter for the field of negative DC voltage applications. In this study, in consideration of the voltage across the energy transferring capacitor changing abruptly at the beginning of each switching cycle, the improved averaged model of the NOESLLC operating in continuous conduction mode (CCM) is established. The improved DC model and transfer functions of the system are derived and analyzed. The current mode control is applied for this NOESLLC. The results from the theoretical calculations, the PSIM simulations and the circuit experiments show that the improved DC model and transfer functions here are more effective than the existed ones of the NOESLLC to describe its real dynamical behaviors.

하이브리드 에너지 저장장치의 계통연계 제어 (Grid-Connected Control of Hybrid Energy Storage)

  • 이언석;강병극;최용오;정세교;오세승;채수용;송유진
    • 한국철도학회논문집
    • /
    • 제18권4호
    • /
    • pp.325-334
    • /
    • 2015
  • 본 논문에서는 하이브리드 에너지 저장장치의 계통연계 제어에 대하여 기술 하였다. 배터리는 큰 에너지 밀도를 가지지만 순간 전력밀도는 낮아 급격한 전류변동이 일어날 경우 수명이 저하된다. 이러한 단점을 보완하기 위해 수퍼커패시터를 함께 사용하는 하이브리드 에너지 저장장치를 구성하였고 이에 대한 제어방법을 제안하였다. 배터리와 수퍼커패시터의 제어를 위해서는 예측형 전류제어기를 가지는 p-q 제어방법을 적용하였다. 제안된 제어기의 효용성을 검증하기 위해 실제 계통모델에 대한 PSIM과 RTDS를 이용한 시뮬레이션을 수행하였다.

비용절감형 컨버터 구조를 갖는 3상-3상 PWM 정류기/인버터 시스템 (Novel Converter Topology for a Three Phase to Three Phase PWM Rectifier/Inverter System)

  • 김기택;박태열;이해춘
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.323-328
    • /
    • 1998
  • A current controlled VSI-PWM rectifier and inverter with capacitor dc link is regarded as one of the most promising structures for three-phase to three-phase to three-phase power conversion. This type of converter normally requires twelve switches for a rectifier and inverter composed of self turn-off switch such as a bi-polar transistor or IGBT with an anti-parallel diode. In this paper, a new three-phase to three-phase converter for ac motor drives is proposed. The proposed converter employs only eight switches and has the capability of delivering sinusoidal input currents with unity power factor and bidirectional power flow. This paper describes the feasibility and the operational limitations of the proposed structure. A mathematical model of the system is derived using generalized modulation theory and experimental results for steady state and dynamic behavior are presented to verify the developed model.

  • PDF

Direct Digital Control of Single-Phase AC/DC PWM Converter System

  • Kim, Young-Chol;Jin, Lihua;Lee, Jin-Mok;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.518-527
    • /
    • 2010
  • This paper presents a new technique for directly designing a linear digital controller for a single-phase pulse width modulation (PWM) converter systems, based on closed-loop identification. The design procedure consists of three steps. First, obtain a digital current controller for the inner loop system by using the error space approach, so that the power factor of the supply is close to one. The outer loop is composed of a voltage controller, a current control loop including a current controller, a PWM converter, and a capacitor. Then, all the components, except the voltage controller, are identified by a discrete-time equivalent linear model, using the closed-loop output error (CLOE) method. Based on this equivalent model, a proper digital voltage controller is then directly designed. It is shown through PSim simulations and experimental results that the proposed method is useful for the practical design of PWM converter controllers.

Fast Diagnosis Method for Submodule Failures in MMCs Based on Improved Incremental Predictive Model of Arm Current

  • Xu, Kunshan;Xie, Shaojun
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1608-1617
    • /
    • 2018
  • The rapid and correct isolation of faulty submodules (SMs) is of great importance for improving the reliability of modular multilevel converters (MMCs). Therefore, a fast diagnosis method containing fault detection and fault location determination was presented in this paper. An improved incremental predictive model of arm current was proposed to detect failures, and the multi-step prediction method was used to eliminate the negative impact of disturbances. Moreover, a control method was proposed to strengthen the fault characteristics to rapidly locate faulty arms and faulty SMs by detecting the variation rate of the SM capacitor voltage. The proposed method can rapidly and easily locate faulty SMs under different load conditions without the need for additional sensors. The experimental results have validated the effectiveness of the proposed method by using a single-phase MMC with four SMs per arm.

바이폴 HVDC 시스템의 EMTP 시뮬레이션 (EMTP Simulation of Bipolar HVDC System)

  • 곽주식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1053-1055
    • /
    • 1998
  • Using EMTP model which describes bipolar HVDC system, switching level simulation results are presented in this paper. Voltage synchronization at point of common coupling, gate pulse generation and current control loops are represented in TACS module. The system consists of 100 km submarine cable rated 300 MW and 12 pulse rectifier and inverter stations which are connected to equivalent three-phase sources and loads through the 154 kV AC lines, respectively. In convertor stations, harmonic filters and capacitor banks are equipped to cancel out the harmonics generated by converters and to supply the required reactive power.

  • PDF

An Inductance Voltage Vector Control Strategy and Stability Study Based on Proportional Resonant Regulators under the Stationary αβ Frame for PWM Converters

  • Sun, Qiang;Wei, Kexin;Gao, Chenghai;Wang, Shasha;Liang, Bin
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1110-1121
    • /
    • 2016
  • The mathematical model of a three phase PWM converter under the stationary αβ reference frame is deduced and constructed based on a Proportional-Resonant (PR) regulator, which can replace trigonometric function calculation, Park transformation, real-time detection of a Phase Locked Loop and feed-forward decoupling with the proposed accurate calculation of the inductance voltage vector. To avoid the parallel resonance of the LCL topology, the active damping method of the proportional capacitor-current feedback is employed. As to current vector error elimination, an optimized PR controller of the inner current loop is proposed with the zero-pole matching (ZPM) and cancellation method to configure the regulator. The impacts on system's characteristics and stability margin caused by the PR controller and control parameter variations in the inner-current loop are analyzed, and the correlations among active damping feedback coefficient, sampling and transport delay, and system robustness have been established. An equivalent model of the inner current loop is studied via the pole-zero locus along with the pole placement method and frequency response characteristics. Then, the parameter values of the control system are chosen according to their decisive roles and performance indicators. Finally, simulation and experimental results obtained while adopting the proposed method illustrated its feasibility and effectiveness, and the inner current loop achieved zero static error tracking with a good dynamic response and steady-state performance.

위상 제어 방식 단상유도전동기의 토크 특성 (Torque characteristic of single phase induction motor for phase control mode)

  • 김철진;최철용;이달은;윤신용;백수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.107-109
    • /
    • 2003
  • Single phase induction motor is directly used usual source, it can be a source of an appliance such as mechanical fan, refrigerator, washing machine, etc. Especially capacitor-run single phase induction motor is suitable to make more inexpensive and high efficient products because it is more high efficiency, and good to start than other single phase induction motors. Generally, voltage and current of capacitor-run single phase induction motor transfer to the part of positive phase and negative phase based on two motor theory. In this paper, we simulate the torque characteristics to capacitance variation from single phase induction motor's equivalent circuit. Through the test using the real motor, we compare and investigate the maximum torque of run state related with capacitance and the adequacy of the converted model.

  • PDF

Sampled-Data Modeling and Dynamic Behavior Analysis of Peak Current-Mode Controlled Flyback Converter with Ramp Compensation

  • Zhou, Shuhan;Zhou, Guohua;Zeng, Shaohuan;Xu, Shungang;Cao, Taiqiang
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.190-200
    • /
    • 2019
  • The flyback converter, which can be regarded as a nonlinear time-varying system, has complex dynamics and nonlinear behaviors. These phenomena can affect the stability of the converter. To simplify the modeling process and retain the information of the output capacitor branch, a special sampled-data model of a peak current-mode (PCM) controlled flyback converter is established in this paper. Based on this, its dynamic behaviors are analyzed, which provides guidance for designing the circuit parameters of the converter. With the critical stability boundary equation derived by a Jacobian matrix, the stable operation range with a varied output capacitor, proportional coefficient of error the amplifier, input voltage, reference voltage and slope of the compensation ramp of a PCM controlled flyback converter are investigated in detail. Research results show that the duty ratio should be less than 0.5 for a PCM controlled flyback converter without ramp compensation to operate in a stable state. The stability regions in the parameter space between the output capacitor and the proportional coefficient of the error amplifier are enlarged by increasing the input voltage or by decreasing the reference voltage. Furthermore, the ramp compensation also can extend to the stable region. Finally, time-domain simulations and experimental results are presented to verify the theoretical analysis results.

A Control Strategy Based on Small Signal Model for Three-Phase to Single-Phase Matrix Converters

  • Chen, Si;Ge, Hongjuan;Zhang, Wenbin;Lu, Song
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1456-1467
    • /
    • 2015
  • This paper presents a novel close-loop control scheme based on small signal modeling and weighted composite voltage feedback for a three-phase input and single-phase output Matrix Converter (3-1MC). A small non-polar capacitor is employed as the decoupling unit. The composite voltage weighted by the load voltage and the decoupling unit voltage is used as the feedback value for the voltage controller. Together with the current loop, the dual-loop control is implemented in the 3-1MC. In this paper, the weighted composite voltage expression is derived based on the sinusoidal pulse-width modulation (SPWM) strategy. The switch functions of the 3-1MC are deduced, and the average signal model and small signal model are built. Furthermore, the stability and dynamic performance of the 3-1MC are studied, and simulation and experiment studies are executed. The results show that the control method is effective and feasible. They also show that the design is reasonable and that the operating performance of the 3-1MC is good.