• 제목/요약/키워드: Capacitor compensation

검색결과 201건 처리시간 0.02초

Coordination Control of Voltage Between STATCOM and Reactive Power Compensation Devices in Steady-State

  • Park, Ji-Ho;Baek, Young-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권5호
    • /
    • pp.689-697
    • /
    • 2012
  • This paper proposes a new coordinated voltage control scheme between STATCOM (Static Synchronous Compensator) and reactive power compensation devices, such as shunt elements(shunt capacitor and shunt reactor) and ULTC(Under-Load Tap Changer) transformer in a local substation. If STATCOM and reactive power compensators are cooperatively used with well designed control algorithm, the target of the voltage control can be achieved in a suddenly changed power system. Also, keeping reactive power reserve in a STATCOM during steady-state operation is always needed to provide reactive power requirements during emergencies. This paper describes the coordinative voltage control method to keep or control the voltage of power system in an allowable range of steady-state and securing method of momentary reactive power reserve using PSS/E with Python. In the proposed method of this paper, the voltage reference of STATCOM is adjusted to keep the voltage of the most sensitive bus to the change of loads and other reactive power compensators also are settled to supply the reactive power shortage in out range of STATCOM to cope with the change of loads. As the result of simulation, it is possible to keep the load bus voltage in limited range and secure the momentary reactive power reserve in spite of broad load range condition.

Load-Balance-Independent High Efficiency Single-Inductor Multiple-Output (SIMO) DC-DC Converters

  • Ko, Younghun;Jang, Yeongshin;Han, Sok-Kyun;Lee, Sang-Gug
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권3호
    • /
    • pp.300-312
    • /
    • 2014
  • A single-inductor multiple-output (SIMO) DC-DC converter providing buck and boost outputs with a new switching sequence is presented. In the proposed switching sequence, which does not require any additional blocks, input energy is delivered to outputs continuously by flowing current through the inductor, which leads to high conversion efficiency regardless of the balance between the buck and boost output loads. Furthermore, instead of multiple output loop compensation, only the freewheeling current feedback loop is compensated, which minimizes the number of off-chip components and nullifies the need for the equivalent series resistance (ESR) of the output capacitor for loop compensation. Therefore, power conversion efficiency and output voltage ripples can be improved and minimized, respectively. Implemented in a 0.35-${\mu}m$ CMOS, the proposed SIMO DC-DC converter achieves high conversion efficiency regardless of the load balance between the two outputs with maximum efficiency reaching up to 82% under heavy loads.

Simplified Control Scheme of Unified Power Quality Conditioner based on Three-phase Three-level (NPC) inverter to Mitigate Current Source Harmonics and Compensate All Voltage Disturbances

  • Salim, Chennai;Toufik, Benchouia Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.544-558
    • /
    • 2013
  • This paper proposes a simplified and efficient control scheme for Unified Power Quality Conditioner (UPQC) based on three-level (NPC) inverter capable to mitigate source current harmonics and compensate all voltage disturbances perturbations such us, voltage sags, swells, unbalances and harmonics. The UPQC is designed by the integration of series and shunt active filters (AFs) sharing a common dc bus capacitor. The dc voltage is maintained constant using proportional integral voltage controller. The shunt and series AF are designed using a three-phase three-level (NPC) inverter. The synchronous reference frame (SRF) theory is used to get the reference signals for shunt and the power reactive theory (PQ) for a series APFs. The reference signals for the shunt and series APF are derived from the control algorithm and sensed signals are injected in tow controllers to generate switching signals for series and shunt APFs. The performance of proposed UPQC system is evaluated in terms of power factor correction and mitigation of voltage, current harmonics and all voltage disturbances compensation in three-phase, three-wire power system using MATLAB-Simulink software and SimPowerSystem Toolbox. The simulation results demonstrate that the proposed UPQC system can improve the power quality at the common connection point of the non-linear load.

Improvement of Output Linearity of Matrix Converters with a General R-C Commutation Circuit

  • Choi, Nam-Sup;Li, Yulong;Han, Byung-Moon;Nho, Eui-Cheol;Ko, Jong-Sun
    • Journal of Power Electronics
    • /
    • 제9권2호
    • /
    • pp.232-242
    • /
    • 2009
  • In this paper, a matrix converter with improved low frequency output performance is proposed by achieving a one-step commutation owing to a general commutation circuit applicable to n-phase to m-phase matrix converters. The commutation circuit consists of simple resister and capacitor components, leading to a very stable, reliable and robust operation. Also, it requires no extra sensing information to achieve commutation, allowing for a one-step commutation like a conventional dead time commutation. With the dead time commutation strategy applied, the distortion caused by commutation delay is analyzed and compensated, therefore leading to better output linear behavior. In this paper, detailed commutation procedures of the R-C commutation circuit are analyzed. A selection of specific semiconductor switches and commutation circuit components is also provided. Finally, the effectiveness of the proposed commutation method is verified through a two-phase to single-phase matrix converter and the feasibility of the compensation approach is shown by an open loop space vector modulated three-phase matrix converter with a passive load.

내부 가습형 연료전지 스택의 출력전압 왜곡 보상기법 (Compensation Scheme for Output Voltage Distortion in Fuel Cell Stack with Internal Humidifier)

  • 구근완;우동균;주동명;이병국
    • 전력전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.37-44
    • /
    • 2013
  • In this paper, the characteristics of portable fuel cell system are introduced and the dynamic response of output voltage of fuel cell stack with internal humidifier is analyzed. When the output of the fuel cell (FC) stack is short-circuited for humidification, the output voltage of the FC stack rapidly drops. In order to maintain the load voltage in the required range, dynamic compensation methods are proposed: 1) installing a capacitor behind the output of the FC stack; 2) utilizing the bi-directional converter. Especially, bi-directional converter is used when short of the FC output is detected or predicted by algorithm using data which is measured during previous three cycles. These methods are simulated by PSIM 9.0, then experimental results from the fuel cell system prototype verify the validity of the proposed methods.

Simplified PWM Strategy for Neutral-Point-Clamped (NPC) Three-Level Converter

  • Ye, Zongbin;Xu, Yiming;Li, Fei;Deng, Xianming;Zhang, Yuanzheng
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.519-530
    • /
    • 2014
  • A novel simplified pulse width modulation(PWM) strategy for neutral point clamped (NPC) three-level converter is proposed in this paper.The direct output voltage modulation is applied to reduce the calculation time. Based on this strategy, several optimized control methods are proposed. The neutral point potential balancing algorithm is discussed and a fine neutral point potential balancing scheme is introduced. Moreover, the minimum pulse width compensation and switching losses reduction can be easily achieved using this modulation strategy. This strategy also gains good results even with the unequal DC link capacitor. The modulation principle is studied in detail and the validity of this simplified PWM strategy is experimentally verified in this paper. The experiment results indicated that the proposed PWM strategy has excellent performance, and the neutral point potential can be balanced well with unequal DC link captaincies.

직접 보상전압 추출기법을 이용하여 고조파전류와 무효전력을 보상하는 3상 4선식 직렬 형 능동전력필터의 제어법 (Three-phase Four-wire Series Active Power Filter Control Strategy for The Compensation of Harmonics and Reactive Power Based-on Direct Compensating Voltage Extraction Method)

  • 김진선;김영석
    • 전력전자학회논문지
    • /
    • 제9권3호
    • /
    • pp.213-221
    • /
    • 2004
  • 최근에, 평활용 직류 커패시터가 설치된 다이오드 정류기가 가전제품 및 교류 운전 장치와 같은 전자 장치에 점점 많이 사용되고 있고, 이러한 부하에 의해서 발생하는 고조파 문제가 점차 중요한 문제로 부각되고 있다. 또한, 3상 4선식 전력 시스템은 상업용 빌딩이나 제조 플랜트 등에 전력을 공급하는 방법으로 많이 사용되고 있는데 이러한 시스템에서는 중성선에 과도한 전류가 흐르게 되고, 중성선 전류는 기본적으로 3고조파 성분으로 중성선 도체 사이즈 선정의 실패나 중성점의 전위를 상승시키거나 변압기의 과열 현상 등을 유발할 수 있다. 이러한 관점에서 본 논문에서는 직접 보상전압 추출기법으로 동작하는 직렬 형 능동 필터를 제안하며, 성능함수 알고리즘의 장점은 게인을 곱하지 않고 보상 전압을 직접 구함으로써, 어떠한 다른 알고리즘보다 보상 전압 계산 방법이 간단하다. 제안된 알고리즘의 타당성을 증명하기 위하여 프로토타입 능동 필터를 제작하여 실험을 수행하였다.

PWM/PFM 모드를 이용한 모바일용 벅 변환기 설계 (Design of the DC-DC Buck Converter for Mobile Application Using PWM/PFM Mode)

  • 박리민;정학진;유태경;윤광섭
    • 한국통신학회논문지
    • /
    • 제35권11B호
    • /
    • pp.1667-1675
    • /
    • 2010
  • 본 논문에서는 무선 휴대 장치의 전력공급을 위해 적용 가능한 고효율 PWM/PFM 모드 DC-DC벅 변환기를 제안한다. 휴대성 확보를 위한 간소화된 보상회로를 사용하고, 휴대장치의 대기 모드 및 저부하에서 높은 효율을 갖도록 설계하였다. 휴대 장치 동작 시간의 대부분을 차지하는 대기모드(저부하: 60mA이하) 및 저부하에서의 고효율 동작을 해서 PFM 동작 모드의 제어를 위해서 상대머신을 설계하였다. 칩 측정 결과 동작모드별로 PWM은 93%, PFM은 92.3%의 최대효율을 확인하였다. 측정된 출력 리플전압은 10mV 이하로 나타났다. 제안된 벅 변환기는 $0.35{\mu}m$ CMOS 공정으로 제작하였으며, 3.3V ~ 2.5V의 입력전압을 받아서 1.8V의 전압을 출력하였다.

Electric Arc Furnace Voltage Flicker Mitigation by Applying a Predictive Method with Closed Loop Control of the TCR/FC Compensator

  • Kiyoumarsi, Arash;Ataei, Mohhamad;Hooshmand, Rahmat-Allah;Kolagar, Arash Dehestani
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권1호
    • /
    • pp.116-128
    • /
    • 2010
  • Modeling of the three phase electric arc furnace and its voltage flicker mitigation are the purposes of this paper. For modeling of the electric arc furnace, at first, the arc is modeled by using current-voltage characteristic of a real arc. Then, the arc random characteristic has been taken into account by modulating the ac voltage via a band limited white noise. The electric arc furnace compensation with static VAr compensator, Thyristor Controlled Reactor combined with a Fixed Capacitor bank (TCR/FC), is discussed for closed loop control of the compensator. Instantaneous flicker sensation curves, before and after accomplishing compensation, are measured based on IEC standard. A new method for controlling TCR/FC compensator is proposed. This method is based on applying a predictive approach with closed loop control of the TCR/FC. In this method, by using the previous samples of the load reactive power, the future values of the load reactive power are predicted in order to consider the time delay in the compensator control. Also, in closed loop control, two different approaches are considered. The former is based on voltage regulation at the point of common coupling (PCC) and the later is based on enhancement of power factor at PCC. Finally, in order to show the effectiveness of the proposed methodology, the simulation results are provided.

전기철도 AT 급전시스템에서의 TSC-SVC를 이용한 전압강하 보상 (Compensation of Voltage Drop Using the TSC-SVC in Electric Railway Power Supply System)

  • 정현수;방성원;김진오
    • 조명전기설비학회논문지
    • /
    • 제16권3호
    • /
    • pp.29-36
    • /
    • 2002
  • 최근 들어 국내 전기철도가 고속 대용량화되고 새로운 전력반도체 기술이 전력변환장치에 채용되면서 이로 인해 AT급전계통에 전압강하 등 전력품질 문제가 대두되고 있다. 지금까지 급전계통의 전압강하 대책으로는 직렬콘덴서(SC)를 주로 설치/운용하였으나 기술적인 한계로 인해 충분한 효과를 달성하지 못하고 있으며 고조파 공진현상도 새롭게 문제시 되고 있다. 또한 신규 전기철도 건설에 따른 전철변전소 위치확보 문제와 운행선로에서의 수송량 증가에 따른 열차 증량편성 및 시격(열차운행시간 간격)단축으로 인한 부하 중대가 예상되고 있으며, 급전사고로 인한 인근 전철변전소로부터의 연장급전 운용 등도 고려해야 하므로 이에 따른 급전시스템의 전압강하 및 전력품질 보상 대책이 요구되고 있다. 따라서 본 논문에서는 효과적인 보상대책 설비의 하나로 TSC방식 SVC를 전기철도의 AT 급전시스템에 적용하는 방안을 검토하고 PSCAD/EMTDC를 이용하여 시뮬레이션을 통해 확인하였다.