• Title/Summary/Keyword: Capacitor bank

Search Result 117, Processing Time 0.03 seconds

Development of the Crowbar System Using a Vacuum Switch (진공 스위치를 이용한 Crowbar 시스템의 개발)

  • 이태호;허창수;이홍식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.12
    • /
    • pp.584-590
    • /
    • 2002
  • Crowbar system is usually applied to a pulsed power system in which a capacitor bank is discharged into a load. This provides a free wheeling path for the load current and prevents the capacitor from recharging due to a reverse voltage. Usually diodes have been used as a crowbar switch, but it is not a practical system because the cost of the diodes goes up enormously with increasing the system voltage and current. This paper presents a novel protection scheme of a charging and discharging system of a 300 kJ capacitor bank using a low-cost crowbar system which consists of a crowbar switch and resistors. Triggered vacuum switch(TVS) was used for a crowbar switch, and Rogowski coil was used to determine a trigger time of TVS. When this crowbar system is applied to our pulsed power system which consists of capacitor bank($123muF$), inductor() for forming a pulse, load resistor$(100 m\Omega)$, and a closing switch, instantaneous reversal voltage of capacitor bank could be limited less than 1.8 ㎸ until capacitor bank was charred to 17 ㎸.

A Study on the Service Reliability and Power Quality Improvement Using Hybrid Type Capacitor Bank (하이브리드 타입 커패시터 뱅크를 이용한 공급신뢰도 및 전력품질 개선 방안 연구)

  • Lee, Hansang;Yoon, Dong-Hee
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.313-319
    • /
    • 2014
  • The objectives of power system operations are to preserve system stability and reliability as well as to supply proper electric power. For an activation of these objectives, voltage and reactive power should be considered. There are a number of types about reactive power sources, and an insertion of shunt capacitor banks are one of the method to support bus voltage adjacent. This paper includes the design procedure to determine the hybrid type capacitor bank configurations on power system to improve stability and reliability. This procedure includes the capacitor bank capacity calculation, reactor type selection, and reactor capacity calculation. The total capacity calculation of capacitor bank is based on the reactive power margin which is calculated through system studies such as, contingency analysis and Q-V analysis. In the second step, the reactor type and its capacity can be determined through the harmonic analysis. This paper shows that the harmonics are decreased by the proposed hybrid type capacitor bank, especially 5th and 7th harmonics.

Component-Based Load Modeling Updated by Hybrid Technique (하이브리드 방식에 의한 미시적 부하모델링)

  • 지평식
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.3
    • /
    • pp.179-182
    • /
    • 2003
  • Component-based method for load model not only should include the performances of the load components, but also should take into consideration the core losses of transformers, the line losses and the capacitor banks. Especially, capacitor bank affects the accuracy of reactive load model in load modeling. But it is difficult to identify actual reactive powers of capacitor banks in power system for load modeling. This research improves the component-based modeling method including uncertain capacitor bank. The proposed method is hybrid technique, which adds the measurement-based method to the existing component-based method for reliable information of capacitor band. The results of case studies were presented to verify the validity of the proposed method.

Design of Capacitor Load Bank for Capacitive Current Switching Tests (진상소전류시험용 Capacitor Load Bank 설계)

  • Roh, Chang-Il;La, Dae-Ryeol;Kim, Sun-Koo;Jung, Heung-Soo;Kim, Won-Man;Lee, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.106-108
    • /
    • 2002
  • Capacitive current switching test for circuit breaker and load breaker switch requires special attention because, after current interruption, the capacitive load contains an electrical charge and can cause dielectric restrike and re-ignition of the switching devices. therefore dielectric strength of capacitor load bank shall be able to withstand 4Vt (Vt : test voltage) and charging voltage discharged within 1 min. In this paper presents both characteristic of capacitive current switching tests and design of capacitor load bank.

  • PDF

Low-cost crowbar system and protection scheme in capacitor bank module (커패시터 뱅크 모듈 구성에 있어서 경제적인 크로바 시스템과 보호회로)

  • Rim, Geun-Hie;Cho, Chu-Hyun;Lee, Hong-Sik;Pavlov, E.P.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2089-2091
    • /
    • 2000
  • Pulsed power systems consist of a capacitor bank, an isolated high-voltage charging power-supply, high-current bus-work for charging and discharging and a control system. In such pulsed power systems, the operating-lifetime of the capacitors is closely dependent on the voltage reversal. Hence, most capacitor-discharging systems includes crowbar circuits. The crowbar circuit prevents the capacitor recharging with reverse voltage. Usually it consists of crowbar resistors and high pulse-current diode-stacks connected in series. The requirements for the diode-stacks are fast-recovery time and high-voltage and large-current ratings, which results in the high cost of the pulsed-power system. This paper presents a protection scheme of a charging and discharging system of a 500kJ capacitor bank using a low-cost crowbar circuit and safety-fuses.

  • PDF

A Development of the Electric Power Supply System for PRT Vehicle (PRT 차량의 전력 공급시스템 개발)

  • Kim, Baek-Hyun;Jeong, Rag-Gyo;Chung, Sang-Gi;Kang, Seok-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.196-200
    • /
    • 2013
  • In this paper, the design of PRT vehicle power supply system is discussed. Since there is no power feeding line facilities in PRT system under development, the PRT vehicle must have its own energy storage device on board. For the energy storage device, ultra-capacitor bank is applied due to its fast charging capability and long life time. Charging the Ultra-capacitor bank is performed by wireless inductive power transfer system. The capacitor bank is charged up in less than 10 seconds when the vehicle is traveling by passenger stations. In this paper the design of the ultra-capacitor bank and the wireless inductive power transfer system for the PRT vehicle are discussed. Tests are conducted for the both system and the result shows the efficiency of the wireless inductive power transfer system is higher than 80%.

Optimized Capacitor Bank Design for Capacitive Current Test for High Power Laboratory and Analysis with EMTP Simulation (대전력 시험소의 부하시험용 콘덴서 뱅크의 최적 설계 및 EMTP 해석)

  • Ahn, S.H.;Lee, H.C.;Ham, G.H.;Kim, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1220-1223
    • /
    • 1998
  • High Power Laboratory is the facility for building to simulate the various phenomena generated from electric systems of the real world and to test making and breaking capability, switching capability and durability of circuit breaker, switchgear and other electric utilities, moreover, load equipments which contain capacitor bank is installed for studying the diverse effects originated from the constituent of load through entire systems or receiving end. Such factors, abnormal voltage or current, can be serious in electrical systems, especially, in the case caused by capacitive components such as overvoltage or inrushcurrent, the problems may be more fatal to the systems. In this paper, the optimal design of capacitor bank which will be equipped in High Power Laboratory, which is for simulating as closely as the practical phenomena resulted from the capacitive currents, and the verification aided by computer simulations are presented. For this, analysis of the circuit characteristics according to the standards which can be criteria of the capacitive current tests and the test circuit configuration in accordance with the analysis are proposed in prelude. In the body of the paper the optimal design of capacitor bank has been obtained on the basis of all conditions mentioned above and the test circuit configuration with LGIS test requirements. furthermore, analysis and verification for the design are derived by EMTP. finally, evaluation for the capacitor bank design and further study plan are concluded.

  • PDF

Analysis on Surge generated in N Module Paralleled Capacitor Bank and Countermeasure for Suppression (N개 모듈로 구성된 커패시터 뱅크의 써지전압 발생 원인 분석 및 억제 대책)

  • Kim, Jin-Sung;Choi, Young-Ho;Jung, Jae-Won;Chu, Jeung-Ho;Sung, Gi-Yeul;Jin, Yun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1597-1599
    • /
    • 2001
  • In this paper, two types of surge voltage generated in the only operation of capacitor bank composed of paralleled multi-modules are analyzed and also studied to suppress those. The surge voltage can give malfuction to the operation of capacitor bank and destroy the expensive components at the worst. The conditions and causes of surge voltage generation and the countermeasure for suppression are presented.

  • PDF

Optimal Allocation of Shunt Capacitor-Reactor Bank in Distribution System with Dispersed Generators Considering Installation and Maintenance Cost (분산전원을 포함한 배전계통에서 설치비용과 유지보수 비용을 고려한 병렬 캐패시터-리액터 Bank의 최적 설치 위치 선정)

  • Heo, Jae-Haeng;Lyu, Jae-Kun;Lee, Woo-Ri;Park, Jong-Young;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1511-1519
    • /
    • 2013
  • This paper proposes the allocation method for capacitor-reactor banks in a distribution system with dispersed generators to reduce the installation costs, the maintenance costs and minimize the loss of electrical energy. The expected lifetime and maintenance period of devices with moving parts depends on the total number of operations, which affects the replacement and maintenance period for aging equipment under a limited budget. In this paper, the expected device lifetimes and the maintenance period are included in the formulation, and the optimal operation status of the devices is determined using a genetic algorithm. The optimal numbers and locations for capacitor-reactor banks are determined based on the optimal operation status. Simulation results in a 69-bus distribution system with the dispersed generator show that the proposed technique performs better than conventional methods.