• Title/Summary/Keyword: Capacitor Structure

Search Result 531, Processing Time 0.023 seconds

Microstrip Ring as a Compact Tunable Microwave Bandgap Structure (소형화한 주파수 가변 마이크로파 밴드갭 구조로 응용된 마이크로스트립 링)

  • Jang, Mi-Young;Kee, Chul-Sik;Park, Ik-Mo;Im, Han-Uk;Han, Hae-Wook;Lee, Jung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.9
    • /
    • pp.35-43
    • /
    • 2002
  • In this paper, microstrip ring with a narrow gap is characterized and used as a tunable microwave bandgap (MBG) structure. The center frequency of MBG is mainly determined by the mean circumference of the ring and coincides with odd mode resonance frequency of the ring resonator. The stop band formation by the proposed microstip MBG ring is due to the reflection of electromagnetic waves at the narrow gap introduced in the ring, and the reactive component mounted on the gap makes the stop band vary according to its value. The mounting of capacitor (inductor) is observed to decrease (increase) the center frequency of the stop band. The varactor-mounted microstrip MBG ring is expected to be useful in microwave switches and microwave amplifier circuits.

Synthesis of Hollow Carbon Microspheres with Mesoporous Shell and Vacant Core Structure and Their Electrochemical Properties (중간세공을 갖는 껍질로 구성된 속이 빈 마이크로 탄소입자의 합성 및 이들의 전기화학적 특성)

  • Lee, Yae Won;Yang, Hee Chun;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.449-454
    • /
    • 2016
  • In this study, highly monodispersed porous carbon microcapsules with a hollow core were synthesized using polystyrene (PS) beads as a hard template. The surface of PS was first modified with polyvinylpyrollidone (PVP) for the easy attachment of inorganic silica sol. After coating the surface of PVP modified PS microspheres with SBA-16 sol, the carbon microcapsules with a hollow macroporous core were fabricated through reverse replication method by filling carbon sources in the mesopores of silica mold. The hollow carbons having a mesoporous shell structure and narrow particle size distribution could be obtained after the carbonization of carbon source and the dissolution of silica mold by HF solution. The mesoporous characteristics and electrochemical properties of hollow carbon microcapsules were characterized by XRD, SEM, TEM, $N_2$ adsorption/desorption analysis and cyclic voltammetry. They showed the high electric conductivity and capability for use as efficient electro-materials such as a supercapacitor.

CMOS Rectifier for Wireless Power Transmission Using Multiplier Configuration (Multiplier 설정을 통한 무선 전력 전송 용 CMOS 정류 회로)

  • Jeong, Nam Hwi;Bae, Yoon Jae;Cho, Choon Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.56-62
    • /
    • 2013
  • We present a rectifier for wireless power transmission using multiplier configuration in layout for MOSFETs which works at 13.56 MHz, designed to fit in CMOS process where conventionally used diodes are replaced with the cross-coupled MOSFETs. Full bridge rectifier structure without comparators is employed to reduce current consumption and to be working up to higher frequency. Multiplier configuration designed in layout reduces time delay originated from parasitic series resistance and shunt capacitance at each finger due to long connecting layout, leading to fast transition from on-state to off-state cross-coupled circuit structure and vice versa. The power conversion efficiency is significantly increased due to this fast transition time. The rectifier is fabricated in $0.11{\mu}m$ CMOS process, RF to DC power conversion efficiency is measured as 86.4% at the peak, and this good efficiency is maintained up to 600 MHz, which is, to our best knowledge, the highest frequency based on cross-coupled configuration.

Electrical characteristics of 4H-SiC MIS Capacitors With Ni/CNT/SiO2 Structure (Ni/CNT/SiO2 구조의 4H-SiC MIS 캐패시터의 전기적 특성)

  • Lee, Taeseop;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.620-624
    • /
    • 2014
  • In this study, the electrical characteristics of Ni/CNT/$SiO_2$ structures were investigated in order to analyze the mechanism of carbon nanotubes in 4H-SiC MIS device structures. We fabricated 4H-SiC MIS capacitors with or without carbon nanotubes. Carbon nanotubes were dispersed by isopropyl alcohol. The capacitance-voltage (C-V) is characterized at 300 to 500K. The experimental flat-band voltage ($V_{FB}$) shift was positive. Near-interface trapped charge density and oxide trapped charge density values of Ni/CNT/$SiO_2$ structure were less than values of reference samples. With increasing temperature, the flat-band voltage was negative. It has been found that its oxide quality is related to charge carriers or defect states in the interface of 4H-SiC MIS capacitors. Gate characteristics of 4H-SiC MIS capacitors can be controlled by carbon nanotubes between Ni and $SiO_2$.

Characteristics of DGS Transmission Line and Influence of Lumped Elements on DGS (Defected Ground Structure를 갖는 전송선로의 특성과 집중소자에 의한 특성)

  • Kim, Chul-Soo;Sung, Jung-Hyun;Kil, Joon-Bum;Kim, Sang-Hyeok;kim, Ho-Sub;Park, Jun-Seok;Ahn, Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.946-951
    • /
    • 2000
  • In this paper, we showed the characteristic of transmission line with DCS (Defected Ground Structure), which is etched on the metallic ground plane. And we extracted the equivalent element value of DGS section. Effects of a lumped element placed on DGS section were investigated by employing DGS of dumbbell shape and parallel resonator with DGS. Chip type resistor, inductor, and capacitor were chosen as lumped elements for experiments. Experimental results show that the Q-factor and resonant frequency of the proposed DGS section can be controlled directly by using the external lumped element.

  • PDF

Low-temperature crystallization of high-dielectric (Ba,Sr)$TiO_3$ thin films for embedded capacitors

  • Cho, Kwang-Hwan;Kang, Min-Gyu;Kang, Chong-Yun;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.21-21
    • /
    • 2010
  • (Ba,Sr)$TiO_3$ (BST) thin film with a perovskite structure has potential for the practical application in various functional devices such as nonvolatile-memory components, capacitor, gate insulator of thin-film transistors, and electro-optic devices for display. Normally, the BST thin films derived from sol-gel and sputtering are amorphous or partially crystalline when processed below $600^{\circ}C$. For the purpose of integrating BST thin film directly into a Si-based read-out integrated circuit (ROIC), it is necessary to process the BST film below $400^{\circ}C$. The microstructural and electrical properties of low-temperature crystallized BST film were studied. The BST thin films have been fabricated at $350^{\circ}C$ by UV-assisted rapidly thermal annealing (RTA). The BST films are in a single perovskite phase and have well-defined electrical properties such as high dielectric constant, low dielectric loss, low leakage current density, and high breakdown voltage. Photoexcitation of the organics contained in the sol-gel-derived films by high-intensity UV irradiation facilitates elimination of the organics and formation of the single-crystalline phase films at low temperatures. The amorphous BST thin film was transformed to a highly (h00)-oriented perovskite structure by high oxygen pressure processing (HOPP) at as low as $350^{\circ}C$. The dielectric properties of BST film were comparable to (or even better than) those of the conventionally processed BST films prepared by sputtering or post-annealing at temperature above $600^{\circ}C$. When external pressure was applied to the well-known contractive BST system during annealing, the nucleation energy barrier was reduced; correspondingly, the crystallization temperature decreased. The UV-assisted RTA and HOPP, as compatible with existing MOS technology, let the BST films be integrated into radio-frequency circuit and mixed-signal integrated circuit below the critical temperature of $400^{\circ}C$.

  • PDF

Electrochemical Properties of Manganese Oxide Electrode for Supercapacitor (수퍼커패시터용 망간옥사이드 전극의 전기화학적 특성)

  • Kim, Han-Joo;Park, Soo-Young;Shin, Dal-Woo;Kim, Yong-Chul;Kim, Seong-Ho;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1518-1520
    • /
    • 2000
  • Amorphous $MnO_{2}{\cdot}nH_{2}O$ in 1M KOH aqueous electrolyte proves to be an excellent electrode for a faradic electrochemical capacitor cycled between -0.5 and +1.0 versus Ag/AgCl. The effect of thermal treatment on the crystalinity, particle structure, and corresponding electrochemical properties of the resulting xerogel remained amorphous as Mn(OH)2 up to 160$^{\circ}C$. With an increase in the temperature above 200$^{\circ}C$, both the surface area and pore volume decreased sharply, because the amorphous Mn(OH)2 decomposed to form MnO that was subsequently oxidized to form crystalline Mn3O4. In addition, the changes in the crystallinity, and particle structure all had significant but coupled effects on the electrochemical properties of the xerogels. A maximum capacitance of 160.6F/g was obtained for an electrode prepared with the MnOx Xerogel calcined at 150$^{\circ}C$, which was consistent with the maxima exhibited in both the surface area and pore volume. This capacitance was attributed solely to a surface redox mechanism.

  • PDF

A 2.5-V, 1-Mb Ferroelectric Memory Design Based on PMOS-Gating Cell Structure (PMOS 게이팅 셀 기반 2.5-V, 1-Mb 강유전체 메모리 설계)

  • Kim, Jung-Hyun;Chung, Yeonbae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.10 s.340
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, a FRAM design style based on PMOS-gating cell structure is described. The memory cell consists of a PMOS access transistor and a ferroelectric capacitor. Its plate is grounded. The proposed scheme employs three novel operating methods: 1) $V_{DD}$ precharged bitline, 2) negative-voltage wordline technique and 3) negative-pulse restore, Because this configuration doesn`t need the on-pitch plate control circuitry, it is effective in realizing cost-effective chip sizes. Implementation for a 2.5-V, 1-Mb FRAM prototype design in a $0.25-{\mu}m$, triple-well technology shows a chip size of $3.22\;mm^{2}$, an access time of 48 ns and an active current of 11 mA. The cell efficiency is 62.52 $\%$. It has gained approximately $20\;\%$ improvement in the cell array efficiency over the conventional plate-driven FRAM scheme.

Design and Implementation of PIC/FLC plus SMC for Positive Output Elementary Super Lift Luo Converter working in Discontinuous Conduction Mode

  • Muthukaruppasamy, S.;Abudhahir, A.;Saravanan, A. Gnana;Gnanavadivel, J.;Duraipandy, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1886-1900
    • /
    • 2018
  • This paper proposes a confronting feedback control structure and controllers for positive output elementary super lift Luo converters (POESLLCs) working in discontinuous conduction mode (DCM). The POESLLC offers the merits like high voltage transfer gain, good efficiency, and minimized coil current and capacitor voltage ripples. The POESLLC working in DCM holds the value of not having right half pole zero (RHPZ) in their control to output transfer function unlike continuous conduction mode (CCM). Also the DCM bestows superlative dynamic response, eliminates the reverse recovery troubles of diode and retains the stability. The proposed control structure involves two controllers respectively to control the voltage (outer) loop and the current (inner) loop to confront the time-varying ON/OFF characteristics of variable structured systems (VSSs) like POESLLC. This study involves two different combination of feedback controllers viz. the proportional integral controller (PIC) plus sliding mode controller (SMC) and the fuzzy logic controller (FLC) plus SMC. The state space averaging modeling of POESLLC in DCM is reviewed first, then design of PIC, FLC and SMC are detailed. The performance of developed controller combinations is studied at different working states of the POESLLC system by MATLAB-Simulink implementation. Further the experimental corroboration is done through implementation of the developed controllers in PIC 16F877A processor. The prototype uses IRF250 MOSFET, IR2110 driver and UF5408 diodes. The results reassured the proficiency of designed FLC plus SMC combination over its counterpart PIC plus SMC.

Optimal Porous Structure of MnO2/C Composites for Supercapacitors

  • Iwamura, Shinichiroh;Umezu, Ryotaro;Onishi, Kenta;Mukai, Shin R.
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.115-121
    • /
    • 2021
  • MnO2 can be potentially utilized as an electrode material for redox capacitors. The deposition of MnO2 with poor electrical conductivity onto porous carbons supplies them with additional conductive paths; as a result, the capacitance of the electrical double layer formed on the porous carbon surface can be utilized together with the redox capacitance of MnO2. However, the obtained composites are not generally suitable for industrial production because they require the use of expensive porous carbons and/or inefficient fabrication methods. Thus, to develop an effective preparation procedure of the composite, a suitable structure of porous carbons must be determined. In this study, MnO2/C composites have been prepared from activated carbon gels with various pore sizes, and their electrical properties are investigated via cyclic voltammetry. In particular, mesoporous carbons with a pore size of around 20 nm form a composite with a relatively low capacitance (98 F/g-composite) and poor rate performance despite the moderate redox capacitance obtained for MnO2 (313 F/g-MnO2). On the other hand, using macro-porous carbons with a pore size of around 60 nm increases the MnO2 redox capacitance (399 F/g-MnO2) as well as the capacitance and rate performance of the entire material (203 F/g-composite). The obtained results can be used in the industrial manufacturing of MnO2/C composites for supercapacitor electrodes from the commercially available porous carbons.