• Title/Summary/Keyword: Capacitively Coupled Plasma

Search Result 117, Processing Time 0.057 seconds

CCP and ICP Combination Impedance Matching Device for Uniformity Improvement of Semiconductor Plasma Etching System (반도체 플라즈마 식각 시스템의 균일도 향상을 위한 CCP와 ICP 결합 임피던스정합 장치)

  • Jung, Doo-Yong;Nam, Chang-Woo;Lee, Jong-Ho;Choi, Dae-Kyu;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.274-281
    • /
    • 2010
  • This paper proposes a DFPS (Dual Frequency Power Source) impedance matching device for uniformity improvement of a semiconductor plasma etching system. The DFPS consists of two parts for safe plasma processing on large-area substrates. The first part is an ICP (Inductively Coupled Plasma) for high integration by using ferrite core. The second part is a CCP (Capacitive Coupled Plasma) to control uniformity of whole cells. Proposed DFPS can achieve high productivity improvement required for semiconductor equipment industry. The proposed plasma system is analyzed, simulated and experimentally verified with a matching equipment at 27.12MHz and 400kHz.

Analysis of Amorphous Carbon Hard Mask and Trench Etching Using Hybrid Coupled Plasma Source

  • Park, Kun-Joo;Lee, Kwang-Min;Kim, Min-Sik;Kim, Kee-Hyun;Lee, Weon-Mook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.74-74
    • /
    • 2009
  • The ArF PR mask was. developed to overcome the limit. of sub 40nm patterning technology with KrF PR. But ArF PR difficult to meet the required PR selectivity by thin PR thickness. So need to the multi-stack mask such as amorphous carbon layer (ACL). Generally capacitively coupled plasma (CCP) etcher difficult to make the high density plasma and inductively coupled plasma (ICP) type etcher is more suitable for multi stack mask etching. Hybrid Coupled Plasma source (HCPs) etcher using the 13.56MHz RF power for ICP source and 2MHz and 27.12MHz for bias power was adopted to improve the process capability and controllability of ion density and energy independently. In the study, the oxide trench which has the multi stack layer process was investigated with the HCPs etcher (iGeminus-600 model DMS Corporation). The results were analyzed by scanning electron microscope (SEM) and it was found that etching characteristic of oxide trench profile depend on the multi-stack mask.

  • PDF

Optimization of down stream plasma ashing process (감광제 건식제거공정의 최적화)

  • 박세근;이종근
    • Electrical & Electronic Materials
    • /
    • v.9 no.9
    • /
    • pp.918-924
    • /
    • 1996
  • A downstream oxygen plasma is generated by capacitively coupled RF power and applied to photoresist stripping. Stripping rate (ashing rate) is measured in terms of RF power, chamber pressure, oxygen flow rate and temperature. Ashing reaction is thermally activated and depends on oxygen radical density. The ashing process is optimized to have the high ashing rate, good uniformity and minimal plasma damage using a statistical method.

  • PDF

Dual-frequency Capacitively Coupled Plasma-enhanced Chemical Vapor Deposition System for Solar Cell Manufacturing

  • Gwon, Hyeong-Cheol;Won, Im-Hui;Sin, Hyeon-Guk;Rehman, Aman-Ur;Lee, Jae-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.310-311
    • /
    • 2011
  • Dual-frequency (DF) capacitively coupled plasmas (CCP) are used to separately control the mean ion energy and flux at the electrodes [1]. This separate control in capacitively coupled radio frequency discharges is one of the most important issues for various applications of plasma processing. For instance, in the Plasma Enhanced Chemical Vapor Deposition processes such as used for solar cell manufacturing, this separate control is most relevant. It principally allows to increase the ion flux for high deposition rates, while the mean ion energy is kept constant at low values to prevent highly energetic ion bombardment of the substrate to avoid unwanted damage of the surface structure. DF CCP can be analyzed in a fashion similar to single-frequency (SF) driven with effective parameters [2]. It means that DF CCP can be converted into SF CCP with effective parameters such as effective frequency and effective current density. In this study, comparison of DF CCP and its converted effective SF CCP is carried out through particle-in-cell/Monte Carlo (PIC-MCC) simulations. The PIC-MCC simulation shows that DF CCP and its converted effective SF CCP have almost the same plasma characteristics. In DF CCP, the negative resistance arises from the competition of the effective current and the effective frequency [2]. As the high-frequency current increases, the square of the effective frequency increases more than the effective current does. As a result, the effective voltage decreases with the effective current and it leads to an increase of the ion flux and a decrease of the mean ion energy. Because of that, the negative resistance regime can be called the preferable regime for solar cell manufacturing. In this preferable regime, comparison of DF (13.56+100 or 200 MHz) CCP and SF (60 MHz) CCP with the same effective current density is carried out. At the lower effective current density (or at the lower plasma density), the mean ion energy of SF CCP is lower than that of DF CCP. At the higher effective current density (or at the higher plasma density), however, the mean ion energy is lower than that of SF CCP. In this case, using DF CCP is better than SF CCP for solar cell manufacturing processes.

  • PDF

Graphene Cleaning by Using Argon Inductively Coupled Plasma

  • Im, Yeong-Dae;Lee, Dae-Yeong;Ra, Chang-Ho;Yu, Won-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.197-197
    • /
    • 2012
  • Device 제작에 사용된 graphene은 일반적인 lithography 공정에서 resist residue에 의한 오염을 피할 수 없으며 이로 인하여 graphene의 pristine한 성질을 잃어버린다. 본 연구에서는 graphene을 저밀도의 argon inductively coupled plasma (Ar-ICP)를 통해 처리함으로서 graphene based back-gated field effect transistor (G-FET)의 특성변화를 유도한 결과에 대해서 보고한다. Argon capacitively coupled plasma (Ar-CCP)은 에 노출된 graphene은 강한 ion bombardment energy로 인하여 쉽게 planar C-C ${\pi}$ bonding (bonding energy: 2.7 eV)이 breaking되어 graphene의 defect이 발생되었다. 하지만 우리의 경우 저밀도의 Ar-ICP가 적용될 때 graphene의 defect이 제한되며 이와 동시에 contamination 만을 제거할 수 있었다. 소자의 전기적 측정 (Gsd-Vbg)을 통하여 contamination으로 인하여 p-doping된 graphene은 pristine 상태로 회복되었으며 mobility도 회복됨이 확인되었다. Ar-ICP를 이용한 graphene cleaning 방법은 저온공정, 대면적 공정, 고속공정을 모두 만족시키며 thermal annealing, electrical current annealing을 대체하여 graphene 기반 소자를 생산함에 있어 쉽고 빠르게 적용할 수 있는 강점이 있다.

  • PDF

The Dielectric Properties of Hexamethyldisiloxane Thin Films by Plasma Polymerization (플라즈마 중합법에 의한 Hexamethyldisiloxane 박막의 유전특성)

  • 이상희;최충석;신태현;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.131-133
    • /
    • 1993
  • Plasma polymerized thin films were prepared using an interelectrode capacitively coupled gas flow type reactor. Hexamethyldisiloxane was chosen as the monomer to be used. The dielectric properties of the thin films have been investigated with the changes of discharge power, heat treatment temperature and frequency. The relative dielectric constant was increased with an increasing of discharge power, but was decreased with an increasing of heat treatment temperature.

  • PDF

Dry Etching of PMMA and Polycarbonate in a Diffusion Pump-based Capacitively Coupled O2 Plasma (확산펌프 기반의 O2 축전결합 플라즈마를 이용한 PMMA와 폴리카보네이트의 건식 식각)

  • Park, Ju-Hong;Lee, Seong-Hyun;Choi, Jyoung-Hoon;Noh, Ho-Sub;Lee, Je-Won
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.421-426
    • /
    • 2009
  • We report on the capacitively coupled O2 plasma etching of PMMA and polycarbonate (PC) with a diffusion pump. Plasma process variables were process pressure and CCP power at 5 sccm $O_2$ gas flow rate. Characterization was done in order to analyze etch rate, etch selectivity, surface roughness, and morphology using stylus surface profilometry and scanning electron microscopy. Self bias decreased with increase of process pressure in the range of 25$\sim$180 mTorr. We found an important result for optimum pressure for the highest etch rate of PMMA and PC, which was 60 mTorr. PMMA and PC had etch rates of 0.46 and 0.28 ${\mu}m$/min under pressure conditions, respectively. More specifically, etch rates of the materials increased when the pressure changed from 25 mTorr to 60 mTorr. However, they reduced when the pressure increased further after 60 mTorr. RMS roughnesses of the etched surfaces were in the range of 2.2$\sim$2.9 nm. Etch selectivity of PMMA to a photoresist was $\sim$1.5:1 and that of PC was $\sim$0.9:1. Etch rate constant was about 0.04 ${\mu}m$/minW and 0.02 ${\mu}m$/minW for PMMA and PC, respectively, with the CCP power change at 5 sccm $O_2$ and 40 mTorr process pressure. PC had more erosion on the etched sidewall than PMMA did. The OES data showed that the intensity of the oxygen atomic peak (777.196 nm) proportionally increased with the CCP power.

Study of nanocrystalline silicon deposition using internal Multiple U-type antenna (내장형 Multiple U-type 안테나를 이용한 나노 다결정 실리콘의 증착에 대한 연구)

  • Kim, Hong-Beom;Lee, Hyeong-Cheol;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.87-88
    • /
    • 2007
  • 나노 다결정 실리콘 박막 증착을 하기 위해서 현재 정전결합플라즈마(CCP, Capacitively Coupled Plasma)를 이용한 PECVD(Plasma Enhanced Chemical Vapor Deposition) 공정에 관한 여구가 활발히 이루어지고 있다. 유도결합플라즈마는(ICP, Inductively Coupled Plasma) 정전결합플라즈마보다 플라즈마 밀도가 높고 파워전달 효율이 좋은 것으로 알려져 있으나 대면적가 어려워 기판이 큰 TFT-LCD로는 많이 연구되고 있지 않다. 본 연구는 유도결합플라즈마를 위해 내장형 multiple U-type 선형 안테나를 이용하여 나노 다결정 실리콘 박막을 증착하여 그 특성을 분석하였다.

  • PDF