• Title/Summary/Keyword: Capacitive switching

Search Result 68, Processing Time 0.031 seconds

Dual Utility AC Line Voltage Operated Voltage Source and Soft Switching PWM DC-DC Converter with High Frequency Transformer Link for Arc Welding Equipment

  • Morimoto Keiki;Ahmed NabilA.;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.366-373
    • /
    • 2005
  • This paper presents two new circuit topologies of the dc busline side active resonant snubber assisted voltage source high frequency link soft switching PWM full-bridge dc-dc power converters acceptable for either utility ac 200V-rms or ac 400V-rms input grid. These high frequency switching dc-dc converters proposed in this paper are composed of a typical voltage source-fed full-bridge PWM inverter, high frequency transformer with center tap, high frequency diode rectifier with inductor input filter and dc busline side series switches with the aid of a dc busline parallel capacitive lossless snubber. All the active switches in the full-bridge arms as well as dc busline snubber can achieve ZCS turn-on and ZVS turn-off transition commutation with the aid of a transformer leakage inductive component and consequently the total switching power losses can be effectively reduced. So that, a high switching frequency operation of IGBTs in the voltage source full bridge inverter can be actually designed more than about 20 kHz. It is confirmed that the more the switching frequency of full-bridge soft switching inverter increases, the more soft switching PWM dc-dc converter with a high frequency transformer link has remarkable advantages for its power conversion efficiency and power density implementations as compared with the conventional hard switching PWM inverter type dc-dc power converter. The effectiveness of these new dc-dc power converter topologies can be proved to be more suitable for low voltage and large current dc-dc power supply as arc welding equipment from a practical point of view.

Optimized Capacitor Bank Design for Capacitive Current Test for High Power Laboratory and Analysis with EMTP Simulation (대전력 시험소의 부하시험용 콘덴서 뱅크의 최적 설계 및 EMTP 해석)

  • Ahn, S.H.;Lee, H.C.;Ham, G.H.;Kim, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1220-1223
    • /
    • 1998
  • High Power Laboratory is the facility for building to simulate the various phenomena generated from electric systems of the real world and to test making and breaking capability, switching capability and durability of circuit breaker, switchgear and other electric utilities, moreover, load equipments which contain capacitor bank is installed for studying the diverse effects originated from the constituent of load through entire systems or receiving end. Such factors, abnormal voltage or current, can be serious in electrical systems, especially, in the case caused by capacitive components such as overvoltage or inrushcurrent, the problems may be more fatal to the systems. In this paper, the optimal design of capacitor bank which will be equipped in High Power Laboratory, which is for simulating as closely as the practical phenomena resulted from the capacitive currents, and the verification aided by computer simulations are presented. For this, analysis of the circuit characteristics according to the standards which can be criteria of the capacitive current tests and the test circuit configuration in accordance with the analysis are proposed in prelude. In the body of the paper the optimal design of capacitor bank has been obtained on the basis of all conditions mentioned above and the test circuit configuration with LGIS test requirements. furthermore, analysis and verification for the design are derived by EMTP. finally, evaluation for the capacitor bank design and further study plan are concluded.

  • PDF

RF MEMS Switches and Integrated Switching Circuits

  • Liu, A.Q.;Yu, A.B.;Karim, M.F.;Tang, M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.166-176
    • /
    • 2007
  • Radio frequency (RF) microelectromechanical systems (MEMS) have been pursued for more than a decade as a solution of high-performance on-chip fixed, tunable and reconfigurable circuits. This paper reviews our research work on RF MEMS switches and switching circuits in the past five years. The research work first concentrates on the development of lateral DC-contact switches and capacitive shunt switches. Low insertion loss, high isolation and wide frequency band have been achieved for the two types of switches; then the switches have been integrated with transmission lines to achieve different switching circuits, such as single-pole-multi-throw (SPMT) switching circuits, tunable band-pass filter, tunable band-stop filter and reconfigurable filter circuits. Substrate transfer process and surface planarization process are used to fabricate the above mentioned devices and circuits. The advantages of these two fabrication processes provide great flexibility in developing different types of RF MEMS switches and circuits. The ultimate target is to produce more powerful and sophisticated wireless appliances operating in handsets, base stations, and satellites with low power consumption and cost.

A Novel Prototype of Duty Cycle Controlled Soft-Switching Half-Bridge DC-DC Converter with Input DC Rail Active Quasi Resonant Snubbers Assisted by High Frequency Planar Transformer

  • Fathy, Khairy;Morimoto, Keiki;Suh, Ki-Young;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.89-97
    • /
    • 2007
  • This paper presents a new circuit topology of active edge resonant snubbers assisted half-bridge soft switching PWM inverter type DC-DC high power converter for DC bus feeding power plants. The proposed DC-DC power converter is composed of a typical voltage source-fed half-bridge high frequency PWM inverter with a high frequency planar transformer link in addition to input DC busline side power semiconductor switching devices for PWM control scheme and parallel capacitive lossless snubbers. The operating principle of the new DC-DC converter treated here is described by using switching mode equivalent circuits, together with its unique features. All the active power switches in the half-bridge arms and input DC buslines can achieve ZCS turn-on and ZVS turn-off commutation transitions. The total turn-off switching losses of the power switches can be significantly reduced. As a result, a high switching frequency IGBTs can be actually selected in the frequency range of 60 kHz under the principle of soft switching. The performance evaluations of the experimental setup are illustrated practically. The effectiveness of this new converter topology is proved for such low voltage and large current DC-DC power supplies as DC bus feeding from a practical point of view.

A Study on the efficiency analysis of CCM boost converter (전류연속모드 승압형 컨버터의 효율 분석에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Lee, Eun-Young;Kwon, Soon-Do;Cho, Kyu-Man;Eom, Tae-Min
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.920-921
    • /
    • 2008
  • This paper presents the efficiency analysis of CCM(Continuous Current Mode) boost converter. A thorough efficiency analysis of a boost converter taking into account the conduction losses, the diode power loss, the switching losses, the gate-drive loss and the capacitive switching loss, for both continuous conduction mode is presented.

  • PDF

Development of an electronic starter using a half-wave rectifier for fluorescent lamps (반파정류를 이용한 형광램프용 전자식 스타터의 개발)

  • Lee, Dong-Ho;Song, Song-Bin;Yeo, In-Seon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2088-2090
    • /
    • 1998
  • A low-cost electronic starter is developed to decrease ignition failure significantly through successive starting trial and to prevent overheating at the end of fluorescent lamp life. Moreover, it has an additional feature of being capable of ignition at the recovered lamp voltage without any circuit correction. The developed electronic starter is consisted of four parts - a half wave rectifier circuit, a timer circuit, a switching circuit and a protection circuit. The protection circuit made up of a transistor and capacitors utilizing capacitive characteristics, carries out successive starting trial and end-of-life protection. Lamp ignition is completed within 0.5 seconds with taking advantage of a high preheating current from the half-wave rectifier circuit. Nevertheless, its performance is proved to be very excellent through a standard switching endurance test.

  • PDF

Fabrication and Characteristic Analysis of Single Poly-Si flash EEPROM (단일층 다결정 실리콘 Flash EEPROM 소자의 제작과 특성 분석)

  • Kwon Young-Jun;Jung Jung-Min;Park Keun-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.601-604
    • /
    • 2006
  • In this paper, we propose the single poly-Si Flash EEPROM device with a new structure which does not need the high voltage switching circuits. The device was designed, fabricated and characterized. From the measurement results, it was found that the program, the erase and the read operations worked properly. The threshold voltage was 3.1 V after the program in which the control gate and the drain were biased with 12 V and 7 V for $100{\mu}S$, respectively. And it was 0.4 V after the erase in which the control gate was grounded and the drain were biased with 11 V for $200{\mu}S$. On the other hand, it was found that the program and the erase speeds were significantly dependent on the capacitive coupling ratio between the control gate and the floating gate. The larger the capacitive coupling ratio, the higher the speeds, but the target the area per cell. The optimum structure of the cell should be chosen with the consideration of the trade-offs.

Circuit Modelling and Eigenfrequency Analysis of a Poly-Si Based RF MEMS Switch Designed and Modelled for IEEE 802.11ad Protocol

  • Singh, Tejinder;Pashaie, Farzaneh
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.3
    • /
    • pp.129-136
    • /
    • 2014
  • This paper presents the equivalent circuit modelling and eigenfrequency analysis of a wideband robust capacitive radio frequency (RF) microelectromechanical system (MEMS) switch that was designed using Poly-Si and Au layer membrane for highly reliable switching operation. The circuit characterization includes the extraction of resistance, inductance, on and off state capacitance, and Q-factor. The first six eigenfrequencies are analyzed using a finite element modeler, and the equivalent modes are demonstrated. The switch is optimized for millimeter wave frequencies, which indicate excellent RF performance with isolation of more than 55 dB and a low insertion loss of 0.1 dB in the V-band. The designed switch actuates at 13.2 V. The R, L, C and Q-factor are simulated using Y-matrix data over a frequency sweep of 20-100 GHz. The proposed switch has various applications in satellite communication networks and can also be used for devices that will incorporate the upcoming IEEE Wi-Fi 802.11ad protocol.

Research to Achieve Uniform Plasma in Multi-ground Capacitive Coupled Plasma

  • Park, Gi-Jeong;Lee, Yun-Seong;Yu, Dae-Ho;Lee, Jin-Won;Lee, Jeong-Beom;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.247.1-247.1
    • /
    • 2014
  • The capacitive coupled plasma is used widely in the semiconductor industries. Especially, the uniformity of the industrial plasma is heavily related with defect ratio of devices. Therefore, the industries need the capacitive coupled plasma source which can generate the uniform plasma and control the plasma's uniformity. To achieving the uniformity of the large area plasma, we designed multi-powered electrodes. We controlled the uniformity by controlling the power of each electrode. After this work, we started to research another concept of the plasma device. We make the plasma chamber that has multi-ground electrodes imaginary (CST microwave studio) and simulate the electric field. The shape of the multi-ground electrodes is ring type, and it is same as the shape of the multi-power electrodes that we researched before. The diameter of the side electrode's edge is 300mm. We assumed that the plasma uniformity is related with the impedance of ground electrodes. Therefore we simulated the imaginary chamber in three cases. First, we connected L (inductor) and C (capacitor) at the center of multi-ground electrodes. Second, we changed electric conductivity of multi-ground electrode. Third, we changed the insulator's thickness between the center ground electrode and the side ground electrode. The driving frequency is 2, 13.56 and 100 MHz. We switched our multi-powered electrode system to multi-ground electrode system. After switching, we measured the plasma uniformity after installing a variable vacuum capacitor at the ground line. We investigate the effect of ground electrodes' impedance to plasma uniformity.

  • PDF

A Novel Induction Heating Type Super Heated Vapor Steamer using Dual Mode Phase Shifted PWM Soft Switching High Frequency Inverter

  • Sugimura, Hisayuki;Eid, Ahmad;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.774-777
    • /
    • 2005
  • In this paper, a constant frequency phase shifting PWM controlled voltage source full bridge-type series load resonant high-frequency inverter using the IGBT power modules is presented for innovative consumer electromagnetic induction heating applications such as a hot water producer, steamer and super heated steamer. The full bridge arm side link passive quasi-resonant capacitor snubbers in parallel with the each power semiconductor device and high frequency AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is discussed and evaluated on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency soft switching PWM inverter topology, what is called class DE type. including the variable-power variable-frequency(VPVF) regulation function can expand zero voltage soft switching commutation range even under low output power setting ranges, which is more suitable and acceptable for induction heated dual packs fluid heater developed newly for consumer power utilizations. Furthermore, even in the lower output power regulation mode of this high-frequency load resonant tank high frequency inverter circuit it is verified that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

  • PDF