• Title/Summary/Keyword: Capacitive sensing

Search Result 100, Processing Time 0.027 seconds

A study on Ultra Precision machining process for Aspheric (비구면 초정밀절삭 공정기술에 관한 연구)

  • 김건희;홍권희;김효식;김현배;양순철;윈종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.90-93
    • /
    • 2003
  • This paper described about the ultra-precision profile measurement of aspheric surfaces using contact probing technique. A contact probe has been designed as a sensing device to obtain measuring resolutions in nanometer regime utilizing a circle leaf spring mechanism and a capacitive-type sensor. The, contact probe is attached on the z-axis during measurement while aspheric object are supported on the diamond turning machine(DTM). The machine xz-axis motions are monitored by a set of two orthogonal plane mirror type laser interferometers. Experimental results show that the contact probing technique developed of on-machine measurement system in this investigation is capable of providing a repeatability of 10 nanometers with a $\pm$20 uncertainty of 200nmPv.

  • PDF

Contact Probing Technique for Profile Measurement of Aspheric Lenses (비구면 렌즈의 형상 측정을 위한 접촉식 프로브 기술 개발)

  • 유승봉;장인철;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.603-606
    • /
    • 2000
  • This dissertation is concerned with ultra-precision profile measurement of aspheric surfaces using contact probing technique. A contact probe has been designed as a sensing device to obtain measuring resolutions in nanometer regime utilizing a leaf spring mechanism and a capacitive-type sensor. The contact probe is attached on the z-axis during measurement while aspheric objects are supported on an precision xy-stage whose lateral motions are monitored by a set of two orthogonal plane mirror type laser interferometers. Experimental results show that the contact probing technique developed in this investigation is capable of providing a repeatability of 50 nanometers with a $\pm$3$\sigma$ uncertainty of 300 nanometers. Thermal disturbance is found the most significant factor that should be precisely controlled for accurate measurement.

  • PDF

Circuit Design for Compesation of a Dry Fingerprint Image Quality on Charge Sharing Scheme (전하분할 방식의 건조 지문이미지 보상회로 설계)

  • Jung, Seung-Min;Yeo, Hyeop-Goo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.795-797
    • /
    • 2013
  • This paper describes a charge sharing capacitive-sensing circuit technique that improves the quality of images captured with fingerprint sensor LSIs. When the finger is dry, the electrical resistance of a finger surface is high. It leads to poor image quality. To capture clear images even when the finger is dry, the modified capacitive detection circuit improves the image quality using an enhancement plate at the finger surface and a voltage control circuit. The test circuit is analyzed on $0.35{\mu}m$ CMOS process.

  • PDF

Design and Implementation of Tangible Interface Using Smart Puck System

  • Bak, Seon Hui;Lee, Jeong Bae;Kim, Jeong Ho;Lee, Hee-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.47-53
    • /
    • 2015
  • In this paper, we propose a novel tangible interface system whose system does not use the expensive hardware is introduced. This proposed tangible interface is used on the table top capacitive multi touch-screen. The tangible interface apparatus which is called smart puck has sanguine arduino compatible board. The board has a Cds photo-sensing sensor and the EPP8266 WiFi module. The Cds sensor decodes the photometric PWM signals from the system and sends corresponding information to the system via TCP/IP. The system has a server called MT-Server to communicate with the smart pucks. The tangible interface shows reliable operation with fast response that is compatible to the expensive traditional devices in the market.

Investigation on Electrochemical Property of CNT Fibers and its Non-enzymatic Sensing Performance for Glucose Detection (CNT Fibers의 전기화학적 특성 및 비효소적 글루코스 검출 성능 고찰)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.159-164
    • /
    • 2021
  • As the attachable-type wearable devices have received considerable interests, the need for the development of high-performance electrode materials of fabric or textiles type is emerging. In this study, we demonstrated the electrochemical property of CNT fibers electrode as a flexible electrode material and its non-enzymatic glucose sensing performance. Surface morphology of CNT fibers was observed by SEM. And the electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The CNT fibers based sensor exhibited improved sensing performances such as high sensitivity, a wide linear range, and low detection limit due to improved electrochemical properties such as low capacitive current, good electrochemical activity by efficient direct electron transfer between the redox species and the electrode interface. Therefore, this study is expected to be used as a basic research for the development of high performance flexible electrode materials based on CNT fibers.

Dual Sensing with Voltage Shifting Scheme for High Sensitivity Touch Screen Detection (고감도 터치스크린 감지를 위한 양방향 센싱과 전압쉬프팅을 이용한 센싱 기법)

  • Seo, Incheol;Kim, HyungWon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.71-79
    • /
    • 2015
  • This paper proposes a new touch screen sensing method that improves the drawback of conventional single-line sensing methods for mutual capacitance touch screen panels (TSPs). It introduces a dual sensing and voltage shifting method, which reduces the ambient noise effectively and enhances the touch signal strength. The dual sensing scheme reduces the detection time by doubling the integration speed using both edges of excitation pulse signals. The voltage shifting method enhances the signal-to-noise ratio (SNR) by increasing the voltage range of integrations, and maximizing the ADC's input dynamic range. Simulation and experimental results using a commercial 23" large touch screen show an SNR performance of 43dB and a scan rate 2 times faster than conventional schemes - key properties suited for a large touch screen panels. We implemented the proposed method into a TSP controller chip using Magnachip's CMOS 0.18um process.

Wireless Gap Sensor Based on Surface Acoustic Wave Device (표면 탄성파 장치에 기반한 무선 간극 센서)

  • Kim, Jae-Geun;Park, Kyoung-Soo;Park, No-Cheol;Park, Young-Pil;Lee, Taek-Joo;Lim, Soo-Cheol;Ohm, Won-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.206-211
    • /
    • 2011
  • In this paper, we report a high-precision wireless gap sensor based on a surface acoustic wave (SAW) device. The sensing element is a parallel-plate capacitor whose dimensions are $3{\times}3\;mm^2$, and is attached to the SAW device as an external load. The SAW device, equipped with an RF antenna, serves simultaneously as a signal conditioner and an RF transponder. The center frequency of the SAW device is 450 MHz. The wireless gap sensor prototype exhibits a resolution of 100 nm and a sensing range of $50{\mu}m$. The proposed sensor system can be used for remote, high-precision gap measurement in hard-to-reach environments.

Humidity Sensing Properties of Iodine-doped PPA Thin Films (Iodine-doped PPA 박막의 감습특성)

  • Min, Nam-Ki;Kang, Hyun-Sik;Kim, Tae-Yoon;Kim, Suk-Ki;Hong, Suk-In
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1561-1563
    • /
    • 1998
  • A capacitive humidity sensor is used as a test device to characterize the performance of iodine doped polyphenylacetylene(PPA) thin films in relative humidity sensing application In comparison with undoped PPA thin films. the iodine doped PPA films showed higher sensitivity(0.19pF/%RH), better linearity(4.2%FS), much lower hysteresis and lower temperature coefficients(0.043 $\sim$ 0.067pF/$^{\circ}C$) over a wide range of relative humidity.

  • PDF

Designing Mobile User Interface with Grip-Pattern Recognition (파지 형태 인식을 통한 휴대 단말용 사용자 인터페이스 설계)

  • Chang, Wook;Kim, Kee-Eung;Lee, Hyun-Jeong;Cho, Joon-Kee;Soh, Byung-Seok;Shim, Jung-Hyun;Yang, Gyung-Hye;Cho, Sung-Jung;Park, Joon-Ah
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.678-683
    • /
    • 2006
  • A novel and intuitive way of accessing applications of mobile devices is presented. The key idea is to use grip-pattern, which is naturally produced when a user tries to use the mobile device, as a clue to determine an application to be launched. To this end, a capacitive touch sensor system is carefully designed and installed underneath the housing of the mobile terminal to capture the image of the user's grip-pattern. The captured data is then recognized by a recognizer with dedicated preprocessing and postprocessing algorithms. The recognition test is performed to validate the feasibility of the proposed user interface system.

  • PDF

A Study of Pressure Sensor for Environmental Monitoring (환경 모니터링을 위한 압력 센서 연구)

  • Hwang, Hyun-Suk;Choi, Won-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.225-229
    • /
    • 2011
  • In this study, capacitive type pressure sensors based on low temperature co-fired ceramics (LTCC) technology for environmental monitoring were demonstrated. The LTCC is one of promising technology than is based one since it has many advantages (e.g., low cost production, high manufacturing yields and easy realizing 3D structure etc.) for sensor application. Especially, it has good mechanical and chemical properties for robust environmental application. The 3D LTCC diaphragm with thickness of 400 ${\mu}m$ were fabricated by laminating 4 green sheets using commercial powder (NEG, MLS 22C). To evaluate the sensing properties of the different cavity areas, two types of diaphragm which had different cavity areas with 25, 49 $mm^2$ respectively, were fabricated. To realize capacitive type pressure sensor, the Au top electrode was fabricated using thermal evaporator and the bottome electrode was compressed using aluminium foil. The sensing properties of the fabricated sensors showed linear characteristic under different pressure (0~30 psi) using pressure measurement system.