• Title/Summary/Keyword: Capacitive divider

Search Result 27, Processing Time 0.024 seconds

Development of the Surge Measurement System for Low Voltage Power Line of Industrial Plants (산업플랜트용 서지 측정 분석 장치 개발)

  • Kim, Y.J.;Kim, J.H.;Chang, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1698-1699
    • /
    • 2007
  • This paper deals with the surge measurement system for low voltage power line of industrial plants. It consists of a capacitive divider, A/D conversion part, signal processing and control part. A FPGA and a DSP board were designed to fast signal processing and control. Also, in order to measure lightning surge and switching surge for a long time, data backup device was applied by using SD memory. A performance of the measurement system was verified through evaluation test using impulse calibration generator.

  • PDF

Construction of 154kV Intelligent Substation for Verification Test (154kV급 실증시험용 인텔리전트 변전소 구축)

  • Chung, Y.H.;Kim, J.B.;Lee, H.S.;Choi, I.H.;Lee, D.I
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.661-662
    • /
    • 2007
  • We have carried out the construction of the 154kV intelligent substation with KEPRI. The intelligent substation is built in Gochang testing facility of KEPCO and consists of electronic instruments for GIS(gas insulated switchgear), digital control panel, remote monitoring and diagnosis system, and digital relay system. Rogowski coil type CT(RCT) and capacitive voltage divider(CVD) are introduced compared with the instrument transformer of conventional type. Digital control panel(DCP) replaces the LCP(local control panel) which is drived for mechanical operation. For the monitoring of the condition of GIS and TR, various sensors are used. In this paper, we mention the synopsis and report the progress state of project.

  • PDF

A Study on the Development of Digital CT/VD for GIS (가스절연개폐장치(GIS)용 디지털 CT/VD 개발에 관한 연구)

  • Kim, M.S.;Kim, J.B.;Song, W.P.;Kim, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.22-24
    • /
    • 2002
  • 지금까지 변전소나 개폐소에서 전류, 전압을 계측하는 수단으로서 주로 철심과 권선으로 구성되어진 변류기(CT), 계기용 변압기(PT, PD)가 사용되어져 왔다. 최근, 2차측의 계측기나 보호 Relay의 Digital화가 진전되어, 또한 이것을 Digital Network으로 총합한 Intelligent 변전소의 구축이 검토되어짐에 따라, Digital Network에 대응한 신형 CT, VD가 요구되어지고 있다. 상기와 같은 요구로 인해 당사에서는 CT는 검출부에 Rogowski Coil을 적용하며 그 후단에 적분기를 설치하였으며, VD는 검출부에 중간 전극을 이용해서 분압하는 방식인 Capacitive Voltage Divider를 사용하고 증폭기를 삽입하여, 각각 요구되는 전압 신호를 얻었다. 이러한 신형 CT/VD의 적용으로 종래의 CT/PT가 차지하는 공간이 필요 없게 되어 컴팩트한 GIS의 구조가 가능하게 되어 있다.

  • PDF

Development of Measuring Techniques for High Voltage Impulse and Small Signals using Pockels Cell (포켈스 소자를 이용한 고전압 임펄스 및 미소신호 측정기술 개발)

  • Hong, J.Y.;Lee, J.B.;Chang, Y.M.;Koo, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1571-1573
    • /
    • 1994
  • In order to substitute for the conventional measuring system which could bring about technical inconveiences, measuring techniques for the fast transient high voltage upto 100 kV and small signals less than 1 V are developed by use of Laser Source with Packets cell. for the former, capacitive voltage divider was specially designed for reducing the impulse voltage less than the half-wave voltage of pockets cell. For the tatter, interferometer type was employed as a mean to removing the fluctuation of Laser output intensity. And also the main beam through the Pockels cell and the reference beam from the Laser source are seperated before being detected respectively by photo diodes. And then, these two signals are amplified and compared for detecting only the small signals applied across the Pockels cell. Throughout this work, Laser-based measuring system is likely to enable us, at this moment, to detect correctly lightning impulse voltage upto 100 kV and the small signals less than 1 V upto the 2 MHz. Such a system could be employed as a possible diagnostic measuring system at the substation.

  • PDF

A 10-bit 40-MS/s Low-Power CMOS Pipelined A/D Converter Design (10-bit 40-MS/s 저전력 CMOS 파이프라인 A/D 변환기 설계)

  • Lee, Sea-Young;Yu, Sang-Dae
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.137-144
    • /
    • 1997
  • In this paper, the design of a 10-bit 40-MS/s pipelined A/D converter is implemented to achieve low static power dissipation of 70 mW at the ${\pm}2.5\;V$ or +5 V power supply environment for high speed applications. A 1.5 b/stage pipeline architecture in the proposed ADC is used to allow large correction range for comparator offset and perform the fast interstage signal processing. According to necessity of high-performance op amps for design of the ADC, the new op amp with gain boosting based on a typical folded-cascode architecture is designed by using SAPICE that is an automatic design tool of op amps based on circuit simulation. A dynamic comparator with a capacitive reference voltage divider that consumes nearly no static power for this low power ADC was adopted. The ADC implemented using a $1.0{\mu}m$ n-well CMOS technology exhibits a DNL of ${\pm}0.6$ LSB, INL of +1/-0.75 LSB and SNDR of 56.3 dB for 9.97 MHz input while sampling at 40 MHz.

  • PDF

A Study on the Improvement of Voltage Measuring Method of 22.9 kV-y Distribution Lines (22.9 kV-y 배전선로의 전압계측방법 개선에 관한 연구)

  • Kil, Gyung-Suk;Song, Jae-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.293-299
    • /
    • 1998
  • An objective of this study is to develop a voltage measuring device that uses a gas-filled switch (GS) on 22.9 kV-y extra-high voltage distribution lines. The voltage measuring device proposed in this paper is a kind of capacitive divider which consists of a detecting electrode attached outside of the bushing of GS, an impedance matching circuit, and a voltage buffer. It can be easily installed in an established GS without changing the structure. For the calibration and application investigations, the voltage measuring device was set up in the 25.8 kV 400 A GS, and a step pulse generator having 5 ns rise time is used. As a result, it was found that the frequency bandwidth of the voltage measuring device ranges from 1.35 Hz to about 13 MHz. The error of voltage dividing ratio which is evaluated by the commercial frequency voltage of 60 Hz was less than 0.2%. In addition, voltage dividing ratio in the commercial frequency voltage and in a non-oscillating impulse voltage were compared, and their deviation were less than 0.7%.

  • PDF

Design and Fabrication of an LPVT Embedded in a GIS Spacer (GIS 스페이서 내장형 저전력 측정용 변압기의 설계 및 제작)

  • Seung-Gwan Park;Gyeong-Yeol Lee;Nam-Hoon Kim;Cheol-Hwan Kim;Gyung-Suk Kil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.175-181
    • /
    • 2024
  • In electrical power substations, bulky iron-core potential transformers (PTs) are installed in a tank of gas-insulated switchgear (GIS) to measure system voltages. This paper proposed a low-power voltage transformer (LPVT) that can replace the conventional iron-core PTs in response to the demand for the digitalization of substations. The prototype LPVT consists of a capacitive voltage divider (CVD) which is embedded in a spacer and an impedance matching circuit using passive components. The CVD was fabricated with a flexible PCB to acquire enough insulation performance and withstand vibration and shock during operation. The performance of the LPVT was evaluated at 80%, 100%, and 120% of the rated voltage (38.1 kV) according to IEC 61869-11. An accuracy correction algorithm based on LabVIEW was applied to correct the voltage ratio and phase error. The corrected voltage ratio and phase error were +0.134% and +0.079 min., respectively, which satisfies the accuracy CL 0.2. In addition, the voltage ratio of LPVT was analyzed in ranges of -40~+40℃, and a temperature correction coefficient was applied to maintain the accuracy CL 0.2. By applying the LPVT proposed in this paper to the same rating GIS, it can be reduced the length per GIS bay by 11%, and the amount of SF6 by 5~7%.