• Title/Summary/Keyword: Capacitance to Voltage Converter

Search Result 126, Processing Time 0.028 seconds

An Integrated Single-Stage Zero Current Switched Quasi-Resonant Power Factor Correnction Converter with Active Clamp Circuit (능동 클램프 회로를 적용한 단상 ZCS 공진형 역률개선 컨버터)

  • 문건우;구관본;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.6
    • /
    • pp.539-546
    • /
    • 1999
  • A new integrated single-stage zero current switched(ZCS) quasi resonant convertedQRC) for the IX)wer f factor correction(PFCl converter is introduced in this paper. The power factor correction can be achieved by t the discontinuous conduction mod$\varepsilon$(DCM) operation of an input current. The proposed converter has the c characteristics of the good IX)wer factor, 10씨 line current harmonics, and tight output regulation. Furthern10re, t the ringing effect due to the output capacitance of the main switch can be eliminated by use of‘ active clamp c circuit. Therefore, the proIX)sed converter is expecttc'(] to be suitable for a compact power converter with a t tightly regulated output voltage requiring a switching frequency of more than several hundrtc'(]s kHz.

  • PDF

A study on the efficiency improvement and miniaturization of a CW $CO_2$ laser using half-bridge resonant Inverter and Cockroft-Walton multiplier (공진형 인버터 및 Cockroft-Walton 회로를 이용한 연속형 $CO_2$ 레이저 효율 향상 및 소형화에 관한 연구)

  • Chung, Hyun-Ju;Min, Byong-Dae;Kim, Hee-Je;Kim, Tae-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1821-1823
    • /
    • 2003
  • We propose a high voltage dc-dc converter for CW(continuous wave) $CO_2$ laser system using a current resonant half-bridge inverter and a Cockcroft-Walton circuit. This high voltage power supply includes a 2-stage voltage multiplier driven by a regulated half-bridge series resonant inverter. The inverter drives a step-up transformer and the transformer secondary is applied to the voltage multiplier. Thus, it has high efficiency because of the less switching losses by virtue of the current resonant half-bridge inverter, and also compact size, small parasitic capacitance in the transformer stage owing to the low number of a winding turn of the step up transformer secondary by combining with Cockroft-Walton circuit. We could be obtained the maximum laser output power of 44 W and the maximum system efficiency of over 16 %.

  • PDF

A study on the high power factor control of the three phase PWM AC / DC converter (3상 PWM AC / DC 콘버터의 고역률 제어에 관한 연구)

  • Baek, Jong-Hyun;Choi, Jong-Soo;Hong, Sung-Tae
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.2
    • /
    • pp.108-119
    • /
    • 1999
  • In this paper, a three phase PWM AC to DC boost converter that operates with unity power factor and sinusodial input currents si presented. The current control of the converter is based on the space vector PWM strategy with fixed switching frequency and the imput current tracks the reference current within one sampling time interval. Space vector PWM strategy for current control was materialized as a digital control method by using DSP. By using this control strategy low ripples in the output voltage, low harmonics in the input current and fast dynamic responses are achieved with a small capacitance in the dc link.

  • PDF

A High-efficiency Single-phase Photovoltaic Inverter for High-voltage Photovoltaic Panels (고전압 태양광 패널용 고효율 단상 태양광 인버터)

  • Hyung-Min, Ryu
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.584-589
    • /
    • 2022
  • For DC-AC power conversion from a high-voltage photovoltaic panel to a single-phase grid, the two-stage transformerless inverter with a buck-boost converter followed by a full-bridge inverter is widely used. To avoid an excessive leakage current due to the large parasitic capacitance of the photovoltaic panel, the full-bridge inverter can only adopt the bipolar PWM which results in much higher power loss compared to the unipolar PWM. In order to overcome such a poor efficiency, this paper proposes a new topology in which an IGBT and a diode for circuit isolation are added to the buck-boost converter. The proposed circuit isolation method allows the unipolar PWM in the full-bridge inverter without any increase in the leakage current so that the overall efficiency can be improved. The validity of the proposed solution is verified by computer simulation and power loss calculation.

A Study on the Smoke Removal Characteristics of the ESP Adopting Resonant dc-dc Converter

  • Kim, Su-Weon;Park, Jong-Woong;Joung, Jong-Han;Chung, Hyun-Ju;Choi, Jin-Young;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.193-200
    • /
    • 2004
  • In this study, we propose a small high voltage power supply, which uses a half-bridge ZCS resonant and Cockroft-Walton circuit as its ESP (Electrostatic Precipitator). This power supply transfers energy from the ZCS resonant inverter to the step-up transformer. The transformer secondary is then applied to the Cockroft-Walton circuit for generating high voltage as a discharging source of electrodes. It is highly efficient because its amount of switching losses are reduced by virtue of the current resonant half-bridge inverter, and also due to the small size, low parasitic capacitance in the transformer stage owing to the low number of winding turns of the step up transformer secondary combined with the Cockroft-Walton circuit. Using this power supply, experiments have been carried out as a function of the switching frequency and duty ratio in order to investigate the smoke removal characteristics. From these results, the best operational condition is obtained at the switching frequency of 9 kHz and the duty ratio of 50% in this ESP.

A High-efficiency Buck-boost Half-bridge Inverter for Single-phase Photovoltaic Generation (단상 태양광 발전용 고효율 벅부스트 하프브리지 인버터)

  • Hyung-Min Ryu
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.450-455
    • /
    • 2023
  • Among single-phase photovoltaic inverters that can avoid excessive leakage current caused by the large parasitic capacitance of photovoltaic panels, a boost converter followed by a half-bridge inverter is the simplest and has the smallest leakage current. However, due to the high DC-link voltage, the rated voltage of the switching devices is high and the switching loss is large. This paper proposes a new circuit topology which can operate as a buck-boost inverter by adding two bidirectional switches to the output side of the half-bridge inverter instead of removing the boost converter. By reducing two stages of power conversion through the high-voltage DC-link to one stage, power loss can be reduced without increasing costs and leakage current. The feasibility of the proposed circuit topology is verified by computer simulation and power loss calculation.

1.5 V Sub-mW CMOS Interface Circuit for Capacitive Sensor Applications in Ubiquitous Sensor Networks

  • Lee, Sung-Sik;Lee, Ah-Ra;Je, Chang-Han;Lee, Myung-Lae;Hwang, Gunn;Choi, Chang-Auck
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.644-652
    • /
    • 2008
  • In this paper, a low-power CMOS interface circuit is designed and demonstrated for capacitive sensor applications, which is implemented using a standard 0.35-${\mu}m$ CMOS logic technology. To achieve low-power performance, the low-voltage capacitance-to-pulse-width converter based on a self-reset operation at a supply voltage of 1.5 V is designed and incorporated into a new interface circuit. Moreover, the external pulse signal for the reset operation is made unnecessary by the employment of the self-reset operation. At a low supply voltage of 1.5 V, the new circuit requires a total power consumption of 0.47 mW with ultra-low power dissipation of 157 ${\mu}W$ of the interface-circuit core. These results demonstrate that the new interface circuit with self-reset operation successfully reduces power consumption. In addition, a prototype wireless sensor-module with the proposed circuit is successfully implemented for practical applications. Consequently, the new CMOS interface circuit can be used for the sensor applications in ubiquitous sensor networks, where low-power performance is essential.

  • PDF

Critical Conduction Mode Bridgeless PFC Converter Based on a Digital Control (디지털 제어 기반의 경계점모드 브릿지리스 PFC 컨버터)

  • Kim, Tae-Hun;Lee, Woo-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2000-2007
    • /
    • 2016
  • Generally, in order to implement the CRM(Critical Conduction Mode), the analog controller is used rather than a digital controller because the control is simple and uses less power. However, according to the semiconductor technology development and various user needs, digital control system based on a DSP is on the rise. Therefore, in this paper, the CRM bridgeless PFC converter based on a digital control is proposed. It is necessary to detect the inductor current when it reaches zero and peak value, for calculating the on time and off time by using the current information. However, in this paper, the on-time and off-time are calculated by using the proposed algorithm without any current information. If the switching-times are calculated through the steady-state analysis of the converter, they do not reflect transient status such as starting-up. Therefore, the calculated frequency is out of range, and the transient current is generated. In order to solve these problems, limitation method of the on-time and off-time is used, and the limitation values are varied according to the voltage reference. In addition, in steady state, depending on the switching frequency, the inductance is varied because of the resonance between the inductor and the parasitic capacitance of the switching elements. In order to solve the problem, inductance are measured depending on the switching frequency. The measured inductance are used to calculate the switching time for preventing the transient current. Simulation and experimental results are presented to verify the proposed method.

Magnetic Design of Flyback Type Snubber for IGCT Applications

  • Shirmohammadi, Siamak;Lama, Amreena;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.367-368
    • /
    • 2016
  • 10kV IGCT has been recently developed and has the potential to push wind turbine systems to higher power and voltage rating. Converters employing IGCTs need snubber and OVP circuit to limit the rate of current's rising and peak over voltage across IGCT during turn on and off state, respectively. The conventional RCD snubber which is used in such power converter dissipates a significant amount of power. In order to reduce the amount of energy lost by conventional RCD snubber, this paper proposes flyback type snubber comprising two coils wound on a magnetic core. The flyback snubber not only meets all of the IGCTs characteristics during on and off-state but also significantly saves the power loss. Modern magnetic model using permeance-capacitance analogy leads to more accurate loss analysis of flyback type di/dt snubber circuit in 3-level NPC type back-to-back VSC. In turns, the comparison between conventional and flyback type snubber yield the effectiveness of proposed snubber in wind turbine systems.

  • PDF

Novel Adaptive Blanking Regulation Scheme for Constant Current and Constant Voltage Primary-side Controlled Flyback Converter

  • Bai, Yongjiang;Chen, Wenjie;Yang, Xiaoyu;Yang, Xu
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1469-1479
    • /
    • 2017
  • Primary-side regulation (PSR) scheme is widely applied in low power applications, such as cell phone chargers, network adapters, and LED drivers. However, the efficiency and standby power requirements have been improved to a high standard due to the new trends of DOE (Department Of Energy) Level VI and COC (Code Of Conduct specifications) V5. The major drawbacks of PSR include poor regulation due to inaccurate feedback and difficulty in acquiring acceptable regulation. A novel adaptive blanking strategy for constant current and constant voltage regulation is proposed in this paper. An accurate model for the sample blanking time related to transformer leakage inductance and the metal-oxide-semiconductor field-effect transistor (MOSFET) parasitic capacitance is established. The proposed strategy can achieve accurate detection for ultra-low standby power. In addition, numerous control factors are analyzed in detail to eliminate the influence of leakage inductance on the loop stability. A dedicated controller integrated circuit (IC) with a power MOSFET is fabricated to verify the effectiveness of the proposed control strategy. Experimental results demonstrated that the prototype based on the proposed IC has excellent performance.